Registration No. :											
--------------------	--	--	--	--	--	--	--	--	--	--	--

Total number of printed pages – 3

B. Tech

PCEI 4303 (New)

Sixth Semester (Back) Examination – 2013 CONTROL SYSTEMS

BRANCH: AEIE, BIOMED, IEE

QUESTION CODE: B241

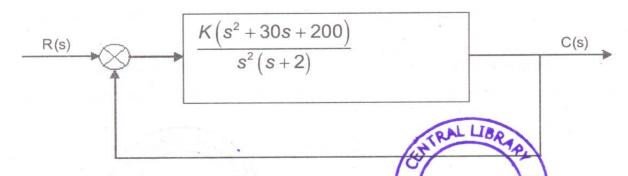
Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any **five** from the rest. The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10


- (a) Differentiate between linear time-invariant and non-linear, time-variant systems.
- (b) Define transfer function and impulse response of a system.
- (c) The response c(t) of a system is described by the differential equation

$$\frac{d^2c(t)}{dt^2} + 4\frac{dc(t)}{dt} + 5c(t) = 0$$

Determine whether the system response is undamped, underdamped, overdamped, or critically damped.

- (d) First column elements of the Routh's tabulation are \$5, -3/4, 1/2, 2. How many roots of the characteristic equation is on the right hand side of the s-plane?
- (e) Define the various static error constants.
- (f) What is the slope of the log-magnitude curve in the low-frequency region of a type ')' system?
- (g) Define gain crossover frequency and phase cross over frequency.
- (h) State Nyqist Stability criteria for a system which is both closed loop and open loop stable. Is it possible to stabilize an open loop unstable system by closing the loop?

- (i) What is the utility of an integral controller?
- (j) What is the State Transition Matrix? Enumerate its properties.
- 2. (a) Draw the block diagram of an armature-controlled dc servomotor and determine its transfer function.
 - (b) (b) Linearize the non-linear equation z = xy in the region $5 \le x \le 7$, $10 \le y \le 12$. Find the error if the linearized equation is used to calculate the value of z when x = 5, y = 10.
- 3. (a) Derive the expressions for rise time, peak time and peak overshoot of the response of a second order system to unit step input.
 - (b) Determine the value of gain K for the system whose closed loop transfer function is $T(s) = \frac{K}{s^2 + 5s + K}$. The response of the system for a unit step input will have 10% overshoot.
- 4. Consider the closed loop feedback system shown in the figure below.

Using Routh-Hurwitz criterion, determine the range of K for which the system is stable. Find also the number of roots of the characteristic equation that are in the right half of the s-plane for K = 0.5.

5. (a) A closed loop system is described by $G(s)H(s) = \frac{K}{s(1+sT_1)(1+sT_2)}$.

Determine the gain margin of the system for K = 1, $T_1 = 1$, $T_2 = 1/3$.

(b) Sketch the Polar plot for the system having open loop transfer function

$$G(s) = \frac{1}{s(Ts+1)}$$

How is a polar plot modified when a pole at the origin is added to the original transfer function?

6. (a) Using Nyquist plot, examine the stability of the closed loop system with

$$G(s)H(s) = \frac{s+2}{(s+1)(s-1)}$$
 5

(b) Consider a feedback system with characteristic equation

$$1+K\frac{1}{s(s+1)(s+2)}=0$$

How many branches of the root locus move to infinity and in which direction? Determine the centroid of the asymptotes.

7. (a) Obtain the transfer function for the system

$$\dot{X} = \begin{bmatrix} 1 & 2 \\ -4 & -3 \end{bmatrix} X + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u$$

$$y = [1 \ 1]X$$

(b) Consider the system

$$\ddot{y} + 6 \ddot{y} + 11 \dot{y} + 6 y = 6 u$$

Obtain a state-space representation of the system in diagonal canonical form.

8. Write short notes on any two:

5×2

5

5

- (a) Stepper Motor
- (b) M-circle
- (c) Generalised error series
- (d) Effects of degenerative feedback on control systems.

3