| Registration No.: |  |  |  |  |  |
|-------------------|--|--|--|--|--|

Total number of printed pages - 2

B. Tech

CPCH 7306 (Old)

## Sixth Semester (Back) Examination – 2013 CHEMICAL REACTION ENGINEERING

BRANCH: CHEM

QUESTION CODE: B335

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Assume suitable notations and any missing data wherever necessary.

1. Answer the following questions:

2×10

- (a) State two differences between elementa yand non-elementary reactions.
- (b) At 500 K the rate of reaction is ten times the rate at 400 K. Find the activation energy for this reaction from Arrhenius law:
- (c) Derive a relation between the total pressure and partial pressure of the reaction :  $N_2O_4 \rightarrow 2 NO_2$ .
- (d) Give a comparison between integral and differential methods.
- (e) Differentiate between constant volume and variable volume batch reactors with suitable examples.
- (f) State some advantages and disadvantages of batch reactors.
- (g) Define space time and space velocity.
- (h) Define recycle ratio.
- (i) What are the factors which affect the rate of reaction?
- (j) State Transition State Theory.
- 2. Derive the integrated rate equation for first order reaction in terms of concentration and second order reaction in terms of conversion. 10
- 3. (a) Derive the performance equation for an ideal batch reactor.

5

In case of first order reaction, show that the time required for 75% conversion is double the time required for 50% conversion. 5 Compare mixed flow reactor with plug flow reactor for first order reaction. 4. 10 (a) A polymerization reaction occurs at constant temperature in a homoge-5. neous phase. For initial monomer concentrations of 0.3, 0.5, and 0.9 mol/l, 30% of the monomer reacts in 40 minutes. Find the reaction rate. (b) After 8 minutes in batch reactor, reactant is 80% converted and after 18 minutes the conversion is 90%. Find the rate expression to represent this reaction if  $C_{AO} = 1 \text{ mol/l.}$ 5 The gas phase decomposition of azo-methane 6.  $(CH_3)_2N_2 \rightarrow C_2H_6 + N_2$ proceeds with rate  $r_{N2} = k_1 [AZO]^2/(1 + k' [AZO])$ , where AZO = azomethane. Devise a mechanism to explain this rate. 5 Phosphine decomposes when heated as per the reaction us (b)  $4 \text{ PH}_3(g) \rightarrow P_4(g) + 6 \text{ H}_2(g).$ At a given instant the rate at which phosphine decomposes is  $2.4 \times 10^{-3}$  mol/l. Express the rate in three different ways using different at notation and show the relationship between them. What is the rate of formation of (a) P<sub>4</sub> and (b) 6H<sub>2</sub>? 5 7. Derive the performance equation for CSTRs in series. 10 8. Write short notes on any two:  $5 \times 2$ (a) Plug flow reactor (b) Autocatalytic reactions

(C)

(d)

Fluidized bed reactor

Equilibrium conversion under adiabatic conditions.