rotarnamber or print	cu pages 2				P	EBT 5		
Total number of printed pages – 2					 B. Tech			
Registration No.:								

Sixth Semester (Back) Examination – 2013

BIOMATERIALS BRANCH: BIOTECH

QUESTION CODE: B226

Full Marks – 70 Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What are the backgrounds of FTIR?
- (b) What do you mean by tissue engineering
- (c) Name two mechanical properties of biomaterials
- (d) What is the kinetics involved in step growth polymerization of polymers?
- (e) What do you mean by synthetic polymers? Give two examples.
- (f) Define Xenograft.
- (g) Which one of the following has highest fracture toughness property? (Metals, ceramics and polymers)
- (h) Define copolymer. Give one example.
- (i) What is biological incompatibility?
- (j) What do you mean by artificial tissue?
- 2. (a) Describe briefly about polymeric biomaterials.

(b) Discuss the properties and kinetics of polymers for drug delivery system. 5

5

- (a) What are metallic, polymeric and ceramic implant materials?
 (b) Looks at some recent techniques of testing and discusses the future development of fracture and wear resistant biomaterials.
- Describe briefly biophysicochemical interactions at the biological interface. Give an account of forces governing the interfacial interactions between biomaterials and biological systems.
- 5. Discuss the design strategies of 2D and 3D matrices (scaffolds) of biomaterials for tissue engineering?
- 6. (a) Differentiate between synthetic polymer and biopolymer. 4
 - (b) Discuss about structure and properties (mechanical, thermal, optical, electrical and surface) of biomaterials.
- 7. Write short notes any **four** of the following:

 2.5×4

- (a) Scaffolds
- (b) Evaluation of biomaterials
- (c) Hydrogels
- (d) Hard tissue replacement
- (e) Self-assembling peptides.