Registration No. :					
_				 	

Total number of printed pages - 2

B. Tech

Sixth Semester (Special/Back) Examination - 2013

IRON MAKING

BRANCH: MME

QUESTION CODE: E 332

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) B/F is a counter current reactor.
- (b) The value of a flux is expressed in terms of available base.
- (c) The depth of central V contour is maximum for pellets during charging in a B/F.

RAL LIBRAD

- (d) ESP is based on the principle of "Zero velocity".
- (e) Direct reduction doesn't occur in side B/F.
- (f) Stukofen is considered to be the progenitor of the modern B/F.
- (g) In B/F hearth firebricks are used as facing lining.
- (h) Silicon content of about 0.5% in pig iron is considered ideal for a basic process of steel making.
- (i) B/F is best suited for phosphorous removal from metal.
- (j) Basicity of bosh slag is higher than final slag.
- (a) Compare and contrast Direct and Indirect reduction. State their importance in B/F iron making.
 - (b) What is the role of angle and size of the big bell on burden distribution in B/F?

3.	(a)	VVha	at do you mean by agglomeration? Describe the objectives of sir	ntering
		and	mention its process variables.	5
	(b)	Wha	at is scaffolding? Mention its causes and remedies.	5
4.	Brie	efly de	escribe the three stage gas cleaning system in blast furnace plan	nt with
	suita	able s	sketches.	10
5.	(a)	Fino	dout the bosh slag basicity of a blast furnace with following data ass	uming
		that	70% of the coke is burnt at the tuyeres with no silica reduction.	
		(i)	Iron ore: 64% Fe, 5.5% SiO ₂	
		(ii)	Coke: 500kg/TMH, ash=10% with 45% SiO ₂ in it	
		(iii)	Pig Iron: 92% Fe and Final slag basicity (CaO/SiO ₂):1.2	5
	(b)	Brie	fly describe the reactions taking place in the stack of a blast furn	ace.5
6.	(a)	Wha	at is Boudouard equilibrium? Draw the Fe-O-C equilibrium dia	agram
		inclu	uding the Boudouard curve and comment on the iron ore reduc	tion in
		side	the blast furnace.	5
	(p)		wa neat sketch for simplified material flew in and out of a moder	n B/F.
		Give	e the composition of a typical Indian pig fron.	5
7.	(a)		at is DRI? Give the physico-chemical reactions of DP process.	5
	(b)	With	n a neat sketch describe the MIDREX process in brief.	5
8.	Writ	e sho	ort notes on any two :	5 × 2
	(a)	Ferr	ro-coke	
	(b)	Nod	ulising	
	(C)	Cok	e reactivity test	
	(d)	High	Top Pressure.	