| Registration No.: | | | | | | | | | | |-----------------------------------|--|--|--|--|--|--|--|--|-----------| | Total number of printed pages – 3 | | | | | | | | | B. Tech | | | | | | | | | | | PCCS 4304 | Sixth Semester Examination - 2013 ## OPERATING SYSTEM BRANCH: BIOMED/ FASHION/ EEE/ ELECT./ AEIE/ ICE/ IEE/ MME/ EIE/ MM QUESTION CODE: A 287 Full Marks - 70 Time: 3 Hours Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right-hand margin indicate marks. Answer the following questions in brief : 2×10 - (a) What is a Semaphore? What are its uses? - (b) What is a thread? Why is it used? - (c) Write four conditions of dead lock occurrence. - (d) Differentiate between a page and a segment. - (e) Differentiate between internal and external fragmentation. - (f) Differentiate between a logical file system and a physical file system. - (g) Differentiate between a process and a program. - (h) Differentiate between time-sharing and batch processing operating system. ENTRAL - (i) Write down the functions of operating system. - (j) Explain Belady's anomaly. Consider the following set of processes, with the length of CPU burst time given in milliseconds. | Process | Burst Time | Priority | | | |----------------|------------|-----------------|--|--| | P ₁ | 10 | 3 | | | | P ₂ | 1 | 1 | | | | P_3 | 2 | 3 | | | | P_4 | 1 | 4 | | | | P ₅ | 5 | 2 | | | Assume all processes have arrived at time, t = 0, in order, P₁, P₂, P₃, P₄, P₅ - (i) Draw four Gantt charts illustrating the execution of these processes using FCFS, SJF, a non preemptive priority (a smaller priority number implies a higher priority), and RR (quantum = 1) scheduling. - (ii) What is the turnaround time of each process for each of the scheduling algorithms in part (i) - (iii) What is the waiting time of each process for each of the scheduling algorithms in part a? - (iv) Which of the schedules in part a results in the minimal average waiting time over all processes? - Consider the following snapshot of a system. | | Allocation | Max | Available | | | |----------------|------------|------|-----------|--|--| | | ABCD | ABCD | ABCD | | | | Po | 0012 | 0012 | 1520 | | | | P ₁ | 1000 | 1750 | | | | | P ₂ | 1354 | 2356 | | | | | P_3 | 0632 | 0652 | | | | | P_4 | 0014 | 0656 | | | | Answer the following questions using Banker's algorithm. 10 - (a) What is the content of the matrix Need? - (b) Is the system in a safe state? If so, what is the safe sequence? - (c) If a request from process P₁ arrives for (0, 4, 2, 0), can the request be granted immediately? | 4. | (a) | Explain various file allocation methods with their advantages and disadvantages | | | | | | | |----|-------|--|---|--|--|--|--|--| | | //- \ | | 5 | | | | | | | | (b) | | 5 | | | | | | | 5. | Des | scribe paged-segmented memory management technique in details. | 0 | | | | | | | 6. | Cor | nsider the following page reference string : | 0 | | | | | | | | 1,2, | 3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6 | | | | | | | | | assi | v many page faults would occur for the following replacement algorithms
uming one and two frames? Remember all frames are initially empty, so you
unique pages will all cost one fault each. | | | | | | | | | (i) | LRU replacement | | | | | | | | | (ii) | FIFO replacement | | | | | | | | | (iii) | Optimal replacement CENTRAL LA | | | | | | | | 7. | (a) | What is virtual memory and thrashing? Explain them. | 5 | | | | | | | | (b) | Explain various states of a process with help of process state transition diagram. | | | | | | | | 8. | Sup | pose that the head of a moving-head disk with 200 tracks, numbered 0 to |) | | | | | | | | | 199, is currently serving a request at track 143 and has just finished a request at | | | | | | | | | track | x 125. The queue of requests is kept in the FIFO order: |) | | | | | | | | 86, 1 | 147, 91, 177, 94, 150, 102, 175, 130 | | | | | | | | | | it is the total number of head movements needed to satisfy these requests for
following disk-scheduling algorithms? | | | | | | | | | (a) | FCFS scheduling | | | | | | | | | (b) | SSTF scheduling | | | | | | | | | (c) | SCAN scheduling | | | | | | | | | (d) | LOOK scheduling | | | | | | | | | (e) | C-SCAN scheduling. | | | | | | |