| Registration No.:                 |  |  |  |  |  |  |  |  |           |
|-----------------------------------|--|--|--|--|--|--|--|--|-----------|
| Total number of printed pages – 3 |  |  |  |  |  |  |  |  | B. Tech   |
|                                   |  |  |  |  |  |  |  |  | PCCS 4304 |

Sixth Semester Examination - 2013

## OPERATING SYSTEM

BRANCH: BIOMED/ FASHION/ EEE/ ELECT./ AEIE/ ICE/ IEE/ MME/ EIE/ MM

QUESTION CODE: A 287

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions in brief :

2×10

- (a) What is a Semaphore? What are its uses?
- (b) What is a thread? Why is it used?
- (c) Write four conditions of dead lock occurrence.
- (d) Differentiate between a page and a segment.
- (e) Differentiate between internal and external fragmentation.
- (f) Differentiate between a logical file system and a physical file system.
- (g) Differentiate between a process and a program.
- (h) Differentiate between time-sharing and batch processing operating system.

ENTRAL

- (i) Write down the functions of operating system.
- (j) Explain Belady's anomaly.

 Consider the following set of processes, with the length of CPU burst time given in milliseconds.

| <b>Process</b> | Burst Time | <b>Priority</b> |  |  |
|----------------|------------|-----------------|--|--|
| P <sub>1</sub> | 10         | 3               |  |  |
| P <sub>2</sub> | 1          | 1               |  |  |
| $P_3$          | 2          | 3               |  |  |
| $P_4$          | 1          | 4               |  |  |
| P <sub>5</sub> | 5          | 2               |  |  |

Assume all processes have arrived at time, t = 0, in order, P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>, P<sub>4</sub>, P<sub>5</sub>

- (i) Draw four Gantt charts illustrating the execution of these processes using FCFS, SJF, a non preemptive priority (a smaller priority number implies a higher priority), and RR (quantum = 1) scheduling.
- (ii) What is the turnaround time of each process for each of the scheduling algorithms in part (i)
- (iii) What is the waiting time of each process for each of the scheduling algorithms in part a?
- (iv) Which of the schedules in part a results in the minimal average waiting time over all processes?
- Consider the following snapshot of a system.

|                | Allocation | Max  | Available |  |  |
|----------------|------------|------|-----------|--|--|
|                | ABCD       | ABCD | ABCD      |  |  |
| Po             | 0012       | 0012 | 1520      |  |  |
| P <sub>1</sub> | 1000       | 1750 |           |  |  |
| P <sub>2</sub> | 1354       | 2356 |           |  |  |
| $P_3$          | 0632       | 0652 |           |  |  |
| $P_4$          | 0014       | 0656 |           |  |  |

Answer the following questions using Banker's algorithm.

10

- (a) What is the content of the matrix Need?
- (b) Is the system in a safe state? If so, what is the safe sequence?
- (c) If a request from process P<sub>1</sub> arrives for (0, 4, 2, 0), can the request be granted immediately?

| 4. | (a)   | Explain various file allocation methods with their advantages and disadvantages                                                                                                                    |   |  |  |  |  |  |
|----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|
|    | //- \ |                                                                                                                                                                                                    | 5 |  |  |  |  |  |
|    | (b)   |                                                                                                                                                                                                    | 5 |  |  |  |  |  |
| 5. | Des   | scribe paged-segmented memory management technique in details.                                                                                                                                     | 0 |  |  |  |  |  |
| 6. | Cor   | nsider the following page reference string :                                                                                                                                                       | 0 |  |  |  |  |  |
|    | 1,2,  | 3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6                                                                                                                                                                |   |  |  |  |  |  |
|    | assi  | v many page faults would occur for the following replacement algorithms<br>uming one and two frames? Remember all frames are initially empty, so you<br>unique pages will all cost one fault each. |   |  |  |  |  |  |
|    | (i)   | LRU replacement                                                                                                                                                                                    |   |  |  |  |  |  |
|    | (ii)  | FIFO replacement                                                                                                                                                                                   |   |  |  |  |  |  |
|    | (iii) | Optimal replacement CENTRAL LA                                                                                                                                                                     |   |  |  |  |  |  |
| 7. | (a)   | What is virtual memory and thrashing? Explain them.                                                                                                                                                | 5 |  |  |  |  |  |
|    | (b)   | Explain various states of a process with help of process state transition diagram.                                                                                                                 |   |  |  |  |  |  |
| 8. | Sup   | pose that the head of a moving-head disk with 200 tracks, numbered 0 to                                                                                                                            | ) |  |  |  |  |  |
|    |       | 199, is currently serving a request at track 143 and has just finished a request at                                                                                                                |   |  |  |  |  |  |
|    | track | x 125. The queue of requests is kept in the FIFO order:                                                                                                                                            | ) |  |  |  |  |  |
|    | 86, 1 | 147, 91, 177, 94, 150, 102, 175, 130                                                                                                                                                               |   |  |  |  |  |  |
|    |       | it is the total number of head movements needed to satisfy these requests for<br>following disk-scheduling algorithms?                                                                             |   |  |  |  |  |  |
|    | (a)   | FCFS scheduling                                                                                                                                                                                    |   |  |  |  |  |  |
|    | (b)   | SSTF scheduling                                                                                                                                                                                    |   |  |  |  |  |  |
|    | (c)   | SCAN scheduling                                                                                                                                                                                    |   |  |  |  |  |  |
|    | (d)   | LOOK scheduling                                                                                                                                                                                    |   |  |  |  |  |  |
|    | (e)   | C-SCAN scheduling.                                                                                                                                                                                 |   |  |  |  |  |  |