Registration No.:	-rate										
-------------------	-------	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 3

B. Tech

FEEE 6301

Sixth Semester (Special / Back) Examination - 2013 INDUSTRIAL PROCESS CONTROL AND DYNAMICS

BRANCH: EEE, ELECTRICAL QUESTION CODE: E 368

> Full Marks - 70 Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What is the need for filtering and impedance matching in signal conditioning?
- (b) State the parameters considered for analysis of Op-Amp with non-ideal response:
- (c) What is digital signal conditioning? Why is it necessary?
- (d) State the relation between a physical Variable and the n-bit representation in a ADC.

(e) Given a temperature of 124.5°C. Express this temperature in Kelvin (K) and Fahrenheit (°F).

- (f) Is the capacitive sensor used for measurement of displacement? If yes, explain how?
- (g) An EM radiation has frequency of 106 Hz. Find its wavelength.
- (h) What is the use of final control element in a process control system? Give one example of it.
- (i) What do you mean by process lag in a process control loop?
- (i) State two features of cascade control scheme.
- (a) Explain the construction, working principles and characteristics of Resistance-Temperature Detector. Also explain how can RTD be used in signal conditioning.
 - (b) State and explain Thermoelectric effects. Also discuss the Thermocouple characteristics.

- (a) A measurement signal has a frequency <1KHz.But there is unwanted noise at about 1MHz.Design a low-pass filter that attenuates the noise to 1%.What is the effect on the measurement signal at its maximum of 1KHz?
 - (b) The divider of Figure 1 below has $R_1 = 10.0 \, \text{K} \Omega$ and $V_s = 5.00 \, \text{V}$. Suppose R_2 is a sensor whose resistance varies from 4.00 to 12.0 K Ω as some dynamic variable varies over a range. Find
 - (a) the minimum and maximum V_D,
 - (b) the range of output impedance, and
 - (c) the range of power dissipated by R2

Figure 1

Figure 2

- 4. (a) A tank shown in Figure 2 above has the following Boolean variables. Flow rates Q_A, Q_B and Q_C pressure P and level L. All are high if the variable is high and low otherwise. Devise Boolean equations for two alarm conditions as follows:
 - (i) OV = Overfill alarm.
 - (a) If either input flow rate is high while the output flow rate is low, the pressure is low and level is high.
 - (b) If both input flow rates are high while the output flow are is low and the pressure is low.
 - (ii) EP = Empty alarm.
 - If both input flow rates are low, the level is low and the output flow rate is high.
 - (b) If either input flow rate is low, the output flow rate is high and the pressure is high.

5

	(b)	State few characteristics of DAC.
5.	(a)	Explain the construction and working principle of Linear Variable Differential Transformer (LVDT).
	(b)	Explain working principle of a Diaphragm used in pressure sensor. 5
6.	(a)	Explain the working principle of a Photovoltaic cell with neat diagram. Also discuss the cell characteristics.
	(b)	State the elements of a final control operation in a process control system. Also explain the final control operation with suitable block diagram.
7.	(a)	Explain the Proportional control and Integral control mode of a continuous controller.
	(b)	Explain the working principle of Cascade control of a Jacketed CSTR with suitable block diagram.
8.	Writ	te short notes on any two of the following: 5×2
	(a)	Bimetal Strips.
	(b)	Relay Controller and Ladder diagrams
	(c)	Pneumatic controller WHTRAL LIBRARY
	(d)	Auctioneering control of Catalytic Tubular Reactors with highly exothermic reactions.