Registration No.:	
-------------------	--

Total number of printed pages – 3

B. Tech PCEC 4304

Sixth Semester (Special / Back) Examination – 2013 DIGITAL SIGNAL PROCESSING

BRANCH: AEIE, EC, EEE, ETC, IEE

QUESTION CODE: E 312

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) Find out frequency response of the system whose impulse response is described as $h(n) = a^n u(n)$.
- (b) The following analog signal is sampled at 8,000 samples per second. $x(t) = \sin(1250t) + 2\cos(1000\pi t)$

What is corresponding discrete time signal after sampling?

- (c) What is approximate transition width of main lobe in the rectangular window? What happens to it if you double the filter length?
- (d) How many real multiplication and real additions are required to compute 16 point DFT using decimation in frequency (DIF) algorithm?
- (e) Draw the basic structure of 1st order digital IIR filter.
- (f) What are the properties of FIR filter?
- (g) State the final value theorem in Z-transform.

PCE	EC 43	04 2	Contd.
	(b)	Explain linear phase and stability property of FIR and IIR filters	5
		Obtain direct form I and form-II structure	
		Y(n) = 0.75y(n-1) - 0.125y(n-2) - x(n) + 0.3x(n-1)	
5.	(a)	Consider the casual system	5
	(~)	- Francis - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	5
	(b)	Explain the Design of linear phase FIR filter using frequency sampling r	nethod
		$H(e^{jw}) = 1$ For $ w < \pi/4$ = 0 otherwise	
		described as	5
4.	(a)	Find the impulse response of LTI system whose frequency resp	
		Into a digital IIR filter using impulse invariance method.	5
		$H(s) = \frac{s + 0.1}{(s + 0.1)^2 + 9}$	
	(b)	Convert the analog filter with the system conction	
3.	(a)	Explain the design of linear phase FIR filter using windows.	5
		to the input signal $x(n) = \delta(n) - \delta(n-1)$	
		y(n) = 0.8y(n-1)+0.2y(n-2)+x(n)	
	(b)	Determine the response of the system	6
		What conditions must hold on a and b for Z-transform to exist?	4
		$x(n) = a^{n}u(n) - b^{n}u(-n-1).$	
2.	(a)	Consider the LTI system described by the equation.	5
	(j)	Why FIR filters are inherently stable?	
	(i)	State circular frequency shifting property of DFT.	

(h) Give the mapping of S-plane to Z-plane using impulse invariance method.

(a) Perform the convolution of the following two sequence using Z-transform 6.

$$X^{1}(n) = \{2,1,0, 1\}$$

$$X^{2}(n) = \{1,2,-1.1\}$$

- Explain how DFT can be used in linear filtering the discrete signal. 5 (b)
- 5 Explain Decimation in time FFT algorithm. 7. (a)
 - What is N-point DFT? Find 4-pont DFT of the discrete signal, (b)

$$X(n) = \{0,1,2,3\}$$

$$5 \times 2$$

- Write short notes on any two of the following: 8.
 - Linear phase FIR filter by frequency sampling method (a)
 - Stability of LTI system (b)
 - Adaptive Line Enhancer (c)
 - Minimum Mean Square Error Criterion. (d)

5