Registration No.:										
-------------------	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 2

B. Tech

PCCH 4305

Sixth Semester (Special / Back) Examination – 2013 CHEMICAL REACTION ENGINEERING

BRANCH: CHEMICAL

QUESTION CODE: E 309

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Assume suitable notations and any missing data wherever necessary.

Answer all parts of a question at a place.

1. Answer the following questions:

2×10

- (a) At 25°C, the rate constant for the hydrolysis of ethyl acetate by NaOH is 7.56 (I/mol).(min)⁻¹ starting with concentration of base and ester of 0.05mol/ I of each. What proportion of ester will be hydrolyzed in 15 mins?
- (b) Differentiate between space time and space velocity.
- (c) The primary reaction occurring in the homogeneous decomposition of nitrous oxide is found to be:

$$N_2O \rightarrow N_2 + (\frac{1}{2})O_2$$

With 60 mole % inerts and 40 mole % of N₂O present with ally, determine the fractional change in volume of the reaction system.

- (d) Differentiate between constant volume and pressure batch reactor.
- (e) Write down the factors which affect the rate of reaction of particles.
- (f) The rate constants of a certain reaction are 1.6×10^{-3} and 1.625×10^{-2} s⁻¹at 10° C and 30° C. Calculate the activation energy.
- (g) What are the fundamental postulates of transition state theory?
- (h) How does (k_1/k_2) affect the product distribution?
- Phosphine decomposes when heated as per the reaction: $4 \, \text{PH}_3 \, (g) \rightarrow P_4 \, (g) + 6 \, \text{H}_2 \, (g)$ At a given instant the rate at which phosphine decomposes is $2.4 \times 10^{-3} \, \text{mol/l.s.}$ Express the rate in three different ways using differential notation and show the relationship between them.
- (j) The design of reactor gets affected by density variation during the reaction. Comment on the statement.

- 2. Derive the integral rate equation for first order reactions in terms of conversion. 6
 - (b) A 10 minutes experimental run shows that 75% of liquid reactant A is converted to product by a half-order rate. What would be the amount of A converted in 30 minutes?
- 3. The primary reaction occurring in the homogeneous decomposition of nitrous oxide is found to be:

$$N_2O \rightarrow N_2 + (\frac{1}{2})O_2$$

with rate : $-r_{N2O} = k_1[N_2O]^2/(1 + k^1[N_2O])$

Devise a mechanism to explain this observed rate.

- Define chain and non-chain reactions with suitable examples. (b)
- 4. (a) In an isothermal batch reactor 70% of a reactant A is converted in 13 minutes. Find the space time and space velocity needed to effect this conversion in a plug flow reactor and in a mixed flow reactor. Assume first order kinetics.
 - (b) Derive the performance equation for ideal steady-state plug flow reactor. 4
- A gaseous feed of pure A with $C_{AO} = 1 \text{ mol/l}$ enters a mixed flow reactor of 5. volume 2 litres. The kinetics of a reaction is given by $2A \rightarrow R$, $-r_{\Delta} = 0.05$ $(C_A)^2$ mol/(l.s)

Find the feed rate (I/min), which will give an outlet concentrate 0.5 mol/l.

- Discuss about the product distributions for reactions in arallel.
- A mixed flow reactor of volume 2000 I processes an aqueble feed (1001/min) 6. containing A ($C_{AO} = 100 \text{ mol/I}$). The reaction is reversible and $A \Leftrightarrow R$, with rate as:

$$-r_A = 0.04 C_A - 0.01 C_R$$
, mol/l.min

Find the equilibrium conversion and actual conversion in the reactor.

A parallel liquid phase reaction 7.

$$A \xrightarrow{k_1} R$$
, $R \xrightarrow{k_2} S$

has the rate constants $k_1 = 52 h^{-1}$ and $k_2 = 0.82 h^{-1}$. Find the moles of R produced in 15 min. Take $C_{AO} = 8.59 \text{mol/l}$ and $C_{BO} = C_{SO} = 0$. 10

Write short notes on any two of the following: 8.

5×2

- Residence time distribution (a)
- (b) Differential rate analysis method
- (C) Selectivity
- Elementary and non-elementary reactions. (d)

10