			*				DCCS 4304
Total number of printed pages – 3						B. Tech	
Registration No. :							

Sixth Semester Examination - 2013

OPERATING SYSTEM

BRANCH: IT

QUESTION CODE: A199

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) What is spooling?
- (b) What are the differences between trap and interrupt
- (c) What is multithreading? What are the divantages of multiprogramming over multiple processes?
- (d) What is the main advantage of the layered approach to system design?
- (e) What are the main advantages for an operating system designer of using virtual machine architecture?
- (f) Differentiate between short term, medium term and long term scheduler.
- (g) What is a dispatcher?
- (h) What do you mean by compaction in memory management?
- (i) What is an overlay?
- (j) Why are page sizes always powers of 2?
- 2. (a) Describe the working principle of multi programming operating system with its memory layout. 5
 - (b) What do you mean by Inter Process Communication? Describe the IPC
 Systems with suitable example.

3. (a) What do you mean by a system call? Explain.

5

(b) What is PCB? Describe the contents of a PCB with diagram.

5

4. Consider the following set of processes, with the length of CPU burst time given in milliseconds.

Process	Burst Time	Priority
P1 ·	10	3
P2	1	1
P3	2	3
P4	1	4
P5	5	2

The processes are assumed to have arrived in the order of p1, p2, p3, p4, p5 all at time 0.

- (a) Draw four Gant charts illustrating the execution of these processes using FCFS, SJF, a non preemptive priority (a smaller priority number implies a higher priority), and RR (quantum = 1) scheduling.
- (b) What is the waiting time for each process for each of the scheduling algorithm?
- 5. (a) What is a semaphore? Explain its use in solving critical section problem.

(b) Explain in brief the following allocation algorithms in memory management.

- (i) Best fit
- (ii) First Fit
- (iii) Worst fit.
- 6. Consider the following snapshot of a system.

	<u>Allocation</u>	Max	<u>Available</u>
	ABCD	ABCD	ABCD
P0	0012	0012	1520
P1	1000	1750	
P2	1354	2356	
P3	0632	0652	
P4	0014	0656	

Answer the following questions using Banker's algorithm.

10

5

- (a) What is the content of the matrix Need?
- (b) Is the system in a safe state?

- (c) If a request from process p1 arrives for (0, 4, 2, 0), can the request be granted immediately?
- 7. (a) How many page faults occur in LRU and Optimal replacement for the following reference string, for 4 page frames? Assume that all frames are initially empty.

1234534167878978954 542

(b) Explain the different allocation methods of files in disk space in file system.

3

2.5×4

- 8. Explain the following terms in brief:
 - (a) Distributed Systems
 - (b) Monitor
 - (c) Thrashing
 - (d) Windows Vista.

