Registration No. :						11	
Total number of printed pages – 2							B. Tech
							PCFC 4304

Sixth Semester Examination – 2013 DIGITAL SIGNAL PROCESSING

BRANCH: EC/ETC

QUESTION CODE: A 152

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What is the minimum required sampling rate for an analog signal of the form $\sin{(200 \pi t)} + \cos{(50 \pi t)}$ to avoid aliasing?
- (b) Sketch x(-n+5).
- (c) What is Gibbs phenomenon?
- (d) Prove that DFT is a linear operation.
- (e) What are advantages of FFT over DFT?
- (f) Why IIR filters does not have Linear phase characteristics?
- (g) State convolution property of Z-transform.
- (h) How can you compute Fourier transform form Z-transform?
- (i) Find the impulse response the LTI system shown below:

$$Y(n) = 0.5x(n-1) + 2x(n)$$

- (j) What is the stability condition of an LTI system?
- 2. (a) Find out the impulse response of the system.

3 + 3

$$y(n) = 0.5y(n-1) + 0.2y(n-2) + 0.4x(n) + x(n-1)$$

Locate the poles and Zeros. Is the system is stable?

P.T.O.

(b) Using Z-transform, find the step response of the system described by y(n) = y(n-1) + 2x(n-2)Bring out mapping between ω and Ω ? Where it is used? 3. (a) 5 (b) Design a single pole low pass digital filter with a 3-dB bandwidth of 0.3π by use of bilinear transformation applied to the analog filter H(s) = $\frac{\Omega}{s+\Omega}$ where Ω is the 3-dB bandwidth of the analog filter. 5 (a) Consider the casual system 4. 6 Y(n) = 0.75y(n-1) - 0.125y(n-2) + x(n) + 0.3x(n-1)Obtain direct form II and parallel structure of the system (b) State the difference between IIR and FIR filter. 4 5. (a) Find inverse Z-transform of the casual signal x(n) whose Z-transform is given as 5 $X(z) = \frac{1}{1 - 1.5z^{-1} - 0.5z^{-2}}$ (b) Determine pole-zero plot for the discrete signal 5 $x(n) = a^n$ $0 \le n \le M-1$ otherwise Where, a > 0(a) Explain Decimation in frequency FFT algorithm. 6. 5 (b) What is the physical significance of IDFT? Find 4-pont IDFT of the signal, X(k) = [1, 0, 0, 1].5 Write short notes on any two: 7. 5×2 (a) System Modeling (b) Stability of LTI system (c) Overlap-save method

(d) The LMS Algorithm.