Registration No.:		3	b -		150	19	101 -			· [A	
Total number of printed pages – 3									B. Tech.		
Total names of printed pages											PCEC 4305

Sixth Semester Examination – 2013 DIGITAL COMMUNICATION TECHNIQUES

BRANCH : EC / ETC

QUESTION CODE: A 173

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) Sketch the sampled waveform when a 1 kHz sinusoid is sampled at the rate of 0.5 kHz and 2 kHz respectively.
- (b) Draw the TDM diagram when two sinusoids each of 1 kHz are sampled at 2 kHz.
- (c) Give the transfer function of a sample and hold circuit.
- (d) What is (are) the disadvantages of a higher order PSK?
- (e) Bring out two differences between DPCM and DM.
- (f) Suggest at least two kinds of pulses suitable for transmission over bandlimited channels.
- (g) Is the matched filter same as a low pass filter? Justify.

- (h) Explain in two sentences the physical reason for SNR improvement using an integrate-and-dump circuit.
- (i) What is a Gaussian channel? Where do you encounter such a channel?
- (j) For what kind of channels, do you normally compute the probability of bit error? Why?
- 2. (a) A TDM system is used to multiplex four signals given as, $m_1(t) = \cos \omega_0 t$, $m_2(t) = 0.5 \cos \omega_0 t$, $m_3(t) = 2 \cos 2 \omega_0 t$ and $m_4(t) = \cos 4 \omega_0 t$. If each signal is sampled at the same sampling rate,
 - (i) Compute the minimum sampling rate f_s .
 - (ii) What is the commutator speed in revolutions per second? 5
 - (b) Show a complete scheme for implementing this four channel TDM. 5
- 3. (a) Show that the response of a rectangular low pass filter, with a bandwidth f_c ,

$$\text{to the impulse function} \quad I\delta\!\left(t-\frac{k^{\prime}}{2f_c}\right) \text{ is } S_R(t) \frac{I\omega_c}{\pi} \frac{\sin\omega_c\left(t-\frac{k^{\prime}}{2f_c}\right)}{\omega_c\left(t-\frac{k^{\prime}}{2f_c}\right)} \qquad 5$$

- (b) Draw an AMI waveform corresponding to a binary bit stream 10011001.
 You may consider an arbitrary polarity for the first pulse. List two advantages of such a line code.
 5
- Derive and sketch the PSD of a BPSK waveform when the baseband signal is an NRZ pulse train. List four salient features of such a PSD.
- (a) A signal bandlimited to 4 kHz, is sampled at twice the Nyquist rate and the samples transmitted by PCM. An output SNR of 47 dB is required. Find the number of bits and the minimum value of S_i/η if operation is to be above threshold.

Derive an expression for the quantization error power in a DM system. Discuss Nyquist first criterion for zero ISI. Is it realized in practice? 5 6. (b) Derive the probability of bit error for BPSK when it is detected by a correlator. 5 (a) Derive an expression for channel capacity. What does it mean physically? 7. 5 How can you attain Sahnnon's limit through the use of orthogonal signals? 5 Explain. 5×2 Write short notes on any two of the following: 8. (a) Companding MSK (b) Equalizers (c)

Optimum receiver.