Registration No. :											
--------------------	--	--	--	--	--	--	--	--	--	--	--

Total number of printed pages – 3

B.Tech

PCEE 4304

Sixth Semester Examination - 2013

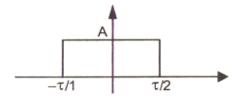
COMMUNICATION ENGINEERING

BRANCH: CSE/IT

QUESTION CODE: A 270

Full Marks - 70

Time: 3 Hours


Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions:

2×10

- (a) What is the bandwidth of PCM system?
- (b) What are the differences between TDM and FDM?
- (c) What is pulse modulation 2 GUNU
- (d) What is bit guard time?
- (e) Draw the split phase code for the sequence 1101001.
- (f) Use the convolution theorem to show that $sinc(t) \otimes sinc(t) = sinc(t)$
- (g) Draw the amplitude spectrum of the following waveform.

(h) Explain the PWM modulator.

- (i) Find the Fourier Transform of cos(wot).
- (j) What do you mean by interpolation? Write the formula for it.
- 2. (a) A signal passed through an ideal low pass filter having frequency response

$$H(f) = \begin{cases} 1 & \text{for } |f| \leq W \\ 0 & \text{for } |f| > W \end{cases}$$

and output of the filter x(t) sampled at interval $T_s = 1/2W$. Show that the signal can be reconstructed using the relation.

$$x(t) = \sum_{n=-\infty}^{\infty} x(nT_s) sinc \left(\frac{t}{T_s} - n\right)$$

6

(b) Differentiate between energy and power signals:

4

- (a) Find the Fourier series expansion of the signal obtained by passing signal cos(2
 ☐ f₀t) through a half wave rectifier.
 - (b) Show that the Fourier transform of $\frac{1}{2}\delta\left(f+\frac{1}{2}\right)+\frac{1}{2}\delta\left(f-\frac{1}{2}\right)$ is $\cos(\Pi t)$. Prove the following transform pair :

$$F[\cos{(\pi t)}] = \frac{1}{2}\delta\left(f + \frac{1}{2}\right) + \frac{1}{2}\delta\left(f - \frac{1}{2}\right) \text{ and }$$

$$F[\sin(\pi t)] = \frac{1}{2}\delta\left(f + \frac{1}{2}\right) + \frac{1}{2}\delta\left(f - \frac{1}{2}\right)$$

- 4. The message signal m(t) =10 sinc(400t) frequency modulates the carrier $c(t) = 100 \cos 2 \pi f_c t$. The modulation index is 6.
 - (a) Write an expression for the modulated signal u(t).
 - (b) What is the maximum frequency deviation?
 - (c) What is the power content of the modulated signal?

5. An AM signal has the form

10

 $u(t) = [20+2\cos 3000\pi t + 10\cos 6000\pi t]\cos 2\pi f_c t.$

where $f_c = 10^5 Hz$

- (a) Sketch the spectrum of u(t).
- (b) Determine the power in each of the frequency component.
- (c) Determine the modulation index.
- (d) Determine the ratio of the sideband power to the total power.
- (a) Two signals are bandlimited to 3 and 5 kHz, are to be time division multiplexed. Find the maximum permissible interval between two successive samples.
 - (b) Explain the cross-talk in PAM due to HF and LF limitation of the channel. 5
- 7. (a) What do you mean by linear delta modulation, and what are the drawback of it?
 - (b) How to overcome above drawbacks of LDM?

5×2

5

- 8. Write short notes on any **two**:
 - (a) Demodulation of PAM
 - (b) Superheterodyne AM receiver
 - (c) Narrowband FM
 - (d) VSB modulation.

-C