Total number of printed pages – 3	B. Tech
Registration No.:	

Sixth Semester Examination – 2013 TRANSPORT PHENOMENA

BRANCH: CHEMICAL

QUESTION CODE: A 264

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Assume suitable notations wherever necessary.

Assume any missing data suitably.

1. Answer the following questions:

2×10

- (a) Specify the interface boundary condition in a system for solving momentum transport problems.
- (b) Estimate the viscosity of liquid benzene at 20°C. (T_b = 80.1°C and specific molar volume = 89.0 cm³/gmol)
- (c) Define convective momentum transport.
- (d) Define equation of motion.
- (e) What are the boundary conditions used for solving shell heat balance equation?
- (f) What are the modes of heat transfer process in a double pipe heat exchanger?
- (g) Write the generalized heat conduction equation for a plane wall with heat generation under unsteady state heat transfer.
- (h) State Eucken formula for thermal conductivity.
- (i) Define Schmidt and Lewis numbers.
- (j) How diffusivity varies with temperature in case of gas and liquid?

- (a) Derive an expression for velocity profile, when non-Newtonian (Power law) fluid flows between two vertical walls, separated by a distance 2B, taking origin at midpoint of 2B distance.
 - (b) One method for determining the radius of a capillary tube is by measuring the rate of flow of a Newtonian liquid through the tube. Find the radius of a capillary from the following flow data:

 5

Length of capillary tube : 50.02 cm

Kinematic viscosity of liquid : $4.03 \times 10^{-5} \,\text{m}^2/\text{s}$

Density of liquid : 955.2 kg/m³

Pressure drop in the horizontal tube : $4.829 \times 10^5 \, \text{Pa}$

Mass rate of flow through tube : 2.997×10^{-3} kg/sec

- 3. (a) In a pipe flow, if $v_{av} = (P_0 P_L)R^2/8 \mu L$, show the head loss is $32 \mu v_{av} L/\rho gd^2$.
 - (b) Derive an expression for shear stress profile, when a Newtonian fluid is flowing in an annulus.
- 4. Consider a long cylindrical nuclear fuel rod, surrounded by an annular layer of aluminum cladding. Within the fuel rod heat is produced by fission; this heat

source depends on position approximately as : $S_n = S_{n0} \left[1 + b \left(\frac{r}{R_F} \right)^2 \right]$. Here

 $\rm S_{n0}$ and b are known constants, and r is the radial coordinate measured from the axis of the cylindrical fuel rod. $\rm R_{F}$ and $\rm R_{C}$ are the radii of fission and cladding materials. Derive an expression for temperature profile in the cladding material if the temperature at the outer surface of cladding is $\rm T_{0}$.

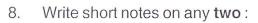
5. (a) A viscous fluid with temperature independent physical properties is in fully developed laminar flow through a vertical tube of radius R. At z=0, the fully developed flow is achieved. For z<0 the fluid temperature is uniform at $T=T_1$. For z>0, heat is added radially at a constant, uniform flux q_0 , at the tube surface. Make a shell energy balance to obtain the differential equation for T(r,z) in the zone z>0.

(b) Develop the non-dimensional differential equation of "part a" in terms of the following variables:

$$\Theta = (T - T_1)/(q_0 R/K), \quad \mathfrak{L} = r/R, \quad \Phi = Kz/(\rho C_p V_{max} R^2)$$

- 6. (a) Diffusion of A through a stagnant gas film. Derive a differential expression for mass flux in z-direction.
 - (b) Derive the mass flux profile as : $N_{AZ} = \frac{CD_{AB}}{z_2 z_1} (x_{A1} x_{A2})$ by neglecting $x_A(N_A + N_B)$.
- 7. (a) A hollow solid sphere has its inner $(r = R_1)$ and outer $(r = R_2)$ surfaces maintained at concentrations C_{A1} and C_{A2} respectively. Obtain the expression for concentration profile in the solid at steady-state condition.
 - (b) Chloropicrin (CCl₃NO₂) is evaporating at 25°C into air inside a cylinder. Make the customary assumption that air is a pure substance. What is the evaporation rate in gm/hr?

Total pressure: 760 mmHg


Diffusivity (CCI₃NO₂-air): 0.088 cm²/sec

Vapor pressure of CCI₃NO₂: 23.81 mmHg

Distance from liquid level to top of tube: 12 cm

Density of CCI₃NO₂: 1.65 gm/cm³

Surface area of liquid exposed for evaporation: 28 cm²

5×2

- (a) Classify types of fluids
- (b) Creeping flow around the sphere
- (c) Conduction and Convection
- (d) Steady state equimolar counter diffusion.