Registration No. :									
Total number of printed pages – 2								B. Tech	
									EECM 6202

Sixth Semester Examination - 2013

ADVANCED NUMERICAL METHODS / NUMERICAL METHODS

BRANCH: CHEMICAL ENGINEERING

QUESTION CODE: A266

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) Define spline function.
- (b) What is linear and quadratic interpolation?
- (c) Write the central difference formula to find $f'(x_i)$, $f''(x_i)$, $f'''(x_i)$, $f''''(x_i)$.
- (d) What is QR method?
- (e) Find f"(3) of the following data using central difference formula:

X	1	2	3	4	
У	0.5	2	5	8	17

- (f) Define Accelerating convergence.
- (g) What is a Predictor-corrector method?
- (h) Obtain the finite difference scheme for solving the differential equation $2 \frac{d^2y}{dx^2} + y = 5$
- (i) Write the Crank-Nicolson's formula to solve the heat equation.
- (j) Define elliptic, parabolic and hyperbolic type of partial differential equations.

- 2. (a) Find the piecewise quadratic polynomial for the following data points : (1, 3), (0, -2), (1, -4), (2, 6).
 - (b) Using cubic-spline interpolation, compute y (1.2) of the given data. 5

Χ	1	2	3	4
У	1.5	2.2	3.1	4.3

- 3. (a) Estimate the value of $f'(\pi/2)$ for $f(x) = \cos x/x$, using Richardson's extrapolation method taking central difference formula as base method.
 - (b) Using Romberg integration, evaluate $\int_{2}^{2} \frac{x}{1+x} dx$ taking h = 0.2.
- 4. (a) Find the dominant eigen value of the matrix $\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & -2 \end{bmatrix}$.
 - (b) Find the smallest eigen value of the matrix $\begin{bmatrix} 1 & 2 & 6 \\ 2 & 5 & 15 \\ 6 & 15 & 46 \end{bmatrix}$.
- 5. (a) Find the best-fit trigonometric polynomial of degree m = 1 of the following data:

Χ	0	π/2	π	3π/2
У	1	1	0	0

- (b) Using FFT, find the interpolation function for the data $z = \{0, 1, 2, 3\}$.
- 6. (a) Using Adams-Moulton 3^{rd} order, find y (0.6) of the initial value problem $dy/dx = y^2 x y$, y (0) = 0.4.
 - (b) Using Adam-Bashforth of 4^{th} order Predictor-Corrector method solve the initial value problem dy/dx = y 2x/y, y(0) = 1 in the interval $\begin{bmatrix} 0 & 1 \end{bmatrix}$ 5
- 7. Using implicit method, solve the heat equation $u_t u_{xx} = 0$, for 0 < x < 1 with boundary conditions are u(0, t) = 0, u(1, t) = 1, for t > 0 for 3 time step.
- 8. Using explicit method, solve the wave equation $u_{tt} u_{xx} = 0$, for 0 < x < 1, t > 0. The initial conditions are u(x, 0) = 2x, for 0 < x < 1, with boundary conditions are u(0,t) = 0, u(1,t) = 0.