Registration No.:
Total number of printed pages – 2 B. Tech
PCCI 4304 (New
Sixth Semester (Back) Examination - 2013
STRUCTURAL ANALYSIS – II
BRANCH: CIVIL
QUESTION CODE: B319
Full Marks – 70
Time: 3 Hours
Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right-hand margin indicate marks.
1. Answer the following questions: 2×10
(a) Why limit analysis of structure is preferred to elastic analysis?
(b) Define ductility.
(c) Define load factor.
(d) What do you mean by a mechanism?
(e) State distribution theorem.
(f) Define plastic hinge.
(g) A continuous beam ABC has two spans AB = 6 m, BC = 4 m. A point load 100 KN acts at the centre of the AB, where as a u.d.l of 25 KN/m acts throughout BC. End A is fixed, CGS simply supported. I _{ab} : I _{bc} = 3:1. Find the distribution factor for the members, GUN

- (h) Write the generalized slope deflection equation for a continuous beam.
- (i) Find the shape factor for a rectangle.
- (j) Explain virtual work principle.

- 3. A fixed beam ABC has two spans AB = 6 m and BC = 4 m. A UDL of 30 KN/m actson span AB. On BC, a point load of 20 KN acts at 1 m from B. Analyse the beam using slope deflection method. Also draw the bending moment diagram. 10
- 4. Find the shear shape factor for a hollow rhombus.
- 5. (a) Compute the plastic section modulus, elastic section modulus for a box section with outside depth 30 cm, wall thickness 1 cm and width 15 cm. 5
 - (b) Compute the shape factor for the above section. Find the plastic moment Mp, if the yield stress is 2500 kg/cmsq.
- 6. A continuous beam ABCD has three spans, AB = 3 m, Bs = 4 m, CD = 4 m. And A is simply supported and D is fixed. A point load of 10 KN acts at 1 m from A on span AB. On BC a udl of 5 KN/m acts. On span CD a point load of 20 KN acts at the center. I ab: I cd = 1.5:2:1. Determine the support moments at A, B, C, D using Kani's method.
- 7. (a) Draw the schematic diagram of a suspension bridge 4
 - (b) Find the expression for horizontal tension in a cable.
- 8. Write notes on: 2.5×4
 - (a) Plastic moment
 - (b) Stiffness and flexibility
 - (c) Degree of redundancy
 - (d) Two hinged arch.

6