Registration No.:			-			
Registration No. :			N.			

Total number of printed pages - 3

B. Tech

HSSM 3302 (New)

Sixth Semester (Back) Examination – 2013 OPTIMIZATION IN ENGINEERING

BRANCH: CIVIL

QUESTION CODE: B303

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) Define artificial variable, pivot element of a LPP.
- (b) Define Non degenerate basic feasible solution and degenerate basic feasible solution.
- (c) Find the dual of following:

Minimize
$$z = x_1 + x_2 + x_3$$

Subject to $x_1 + 2x_2 \le 3$
 $x_1 - 3x_2 + 4x_3 = 5$
 $2x_1 - x_3 \ge 4$
 $x_1, x_2, x_3 \ge 0$

- (d) What is sensitivity analysis?
- (e) What is the criteria of optimality in Transportation problem
- (f) What is the difference between revised simplex method and simplex method?
- (g) What is Queueing Discipline?
- (h) Explain Quadratic Programming.
- (i) What is M/M/I (N/FCFS) model.
- (j) What are Langrange multipliers.

Minimize
$$z = 3x_1 + 5x_2$$

subject to $-3x_1 + 4x_2 \le 12$
 $2x_1 + 3x_2 \le 12$
 $2x_1 - x_2 = -2$
 $x_1 \le 4, x_2 \ge 2$;
 $x_1, x_2 \ge 0$

(b) Using Big-M method solve the following LPP:

6

5

Maximize
$$z = 2x_1 + 4x_2 - 3x_3$$

Subject to $x_1 + x_2 + x_3 \ge 8$
 $x_1 - x_2 \ge 1$
 $3x_1 + 4x_2 + x_3 \le 40$
 $x_1, x_2, x_3 \ge 0$

3.

simplex method to solve the LPP:

 $z = -2x_1 - x_2$

 $x_1 + x_2 + x_3 \ge 5$ Subject to

 $x_1 - 2x_2 + 4x_3 \ge 8$

 $X_1, X_2, X_3 \ge 0$

Find the optimal solution of the following transportation problem using Vogel's approximation method to find the initial basic feasible solution. 5

Ware h	ouses	Availability			
19	30	50	10	7	
70	30	40	60	9	
40	8	70	20	18	

Requirement

A tax consulting firm has 3 counters in its office to receive people who have problems concerning their income, wealth and sales taxes. On the average 48 persons arrive in an 8-hours day. Each tax adviser spends 15 minutes on an average on an interval. If the arrivals follow Poisson distribution and service times are according to exponential distribution, find

- (a) the average number of customers in the system.
- (b) average number of customers waiting to be served.
- (c) average time a customers spends in the system.
- (d) average waiting time for a customer.
- (e) the number of hours each week a tax adviser spends performing his job.
- 5. Solve the following mixed integer problem by the branch and bound method: 10

Maximize
$$z = x_1 + x_2$$

Subject to $2x_1 + 5x_2 \le 16$
 $6x_1 + 5x_2 \ge 30$
 $x_1, x_2 \ge 0$ and integers.

6. Use the method of Langrangian multipliers to solve the following NLPP: 10

Optimize
$$z = 2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + 8x_2 + 6x_3 - 100$$

Subject to $x_1 + x_2 + x_3 = 20$
 $x_1, x_2, x_3 \ge 0$

7. Solve the following quadratic programming problem

Minimize
$$z = x_1^2 - x_1x_2 + 3x_2^2 - 4x_2 + 4$$

Subject to $x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$
Explain genetic algorithm

8. (a) Explain genetic algorithm.

(b) Write the different steps involved in project gradient method giving an example.

10

5