Registration No.:											
-------------------	--	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 3

B. Tech

FESM 6302 (New)

Sixth Semester (Back) Examination – 2013 NUMERICAL METHODS

BRANCH: CHEM

QUESTION CODE: B296

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Assume suitable notations and any missing data wherever necessary.

1. Answer the following questions:

 2×10

- (a) What are numerical methods? Write down its application
- (b) If $Y(X_{i-1}) = Y_{i-1}$ and $Y(X_i) = Y_i$, write down the piecewise linear interpolation formula for Y(X) valid in $X_{i-1} \le X \le X_i$.
- (c) Write the forward difference formula to find (X_i) $f''(X_i)$ and $f''''(X_i)$.
- (d) What is Eigen value problem and write down its application.
- (e) Find out Eigen values and eigen vector of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$.
- (f) Find a QR factorization of $\begin{bmatrix} 3 & 7 \\ 4 & 4 \end{bmatrix}$.
- (g) What is the need of numerical solution for differential equation?
- (h) What do you mean by partial differential equation?
- (i) What are the methods you use to solve one dimensional wave equation?
- (j) "Multistep methods are not self starting." Justify.
- (a) Calculate the density of 26 % solution of phosphoric acid in water using piece wise quadratic interpolation. The following data are quoted from Perry handbook.

Y, Density	1.0764	1.1134	1.2160	1.3350
X, Percentage H ₃ PO ₄	14	20	35	50

(b) Find the interpolating polynomial for the following data using piecewise cubic hermite interpolation.

X	0	1	2
Υ	1.	3	35
Y	1	6	81

3. (a) The upward force of air resistance on a falling object is proportional to the square root of the velocity. For this the velocity can be computed as:

$$V(t) = \frac{ds}{dt} = \sqrt{\frac{gm}{C_D}} \tanh\left(t\sqrt{\frac{gC_D}{m}}\right),\,$$

where, C_D is a second order drag coefficient = 0.25 kg/min, g = 9.81 m/s², m = 68.1 kg. Determine how far the object falls in 5 seconds by taking $h_1 = 1$ and $h_2 = 0.5$ by using Simpson's 1/3rd rule and then by Romberg's method.

(b) Estimate the first derivative of $f(x) = -0.1x^4 - 0.15x^3 + 0.25x + 1.2$ at x = 0.5 using finite differences and a step size of h = 0.25 and compute the error on the basis of the true value of -0.9125.

4. Find the QR factorization of
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
.

5. (a) Find out numerically smallest Eigen value of the matrix by inverse power

method.
$$A = \begin{bmatrix} -15 & 4 & 3 \\ 10 & -12 & 6 \\ 20 & -4 & 2 \end{bmatrix}$$
.

(b) Find the least square trigonometric approximation with m=2 for five data points.

Т	0	2π/5	4 π/5	6 π/5	$8\pi/5$
Χ	1	3	2	0	-1

6. (a) Using Milne's predictor corrector method find Y (4.4). Given that $5xy'+y^2-2=0$, y(4)=1, y(4.1)=1.0049, y(4.2)=1.0097 and y(4.3)=1.0143.

A mass balance for a chemical in a completely mixed reactor can be written (b) as:

$$V\frac{dc}{dt} = F - Qc - KVc^2$$

where, $V = Volume = 12 \text{ m}^3$.

 $C = concentration (g/m^3),$

F = Feed rate = 175 g/min

Q = flow rate = 1 m³/min, and

K = second order reaction rate = 0.15 m³/g/min.

If C(0) = 0 and h = 0.5, then solve the ODE using 3rd order Adam's Bashforth method until the concentration reaches a stable level. 5

- (a) Using Crank-Nicolson method, solve $U_t = U_{xx}$, subject to u(x, 0) = 0, 7. u(0, t) = 0, and u(1, t) = t, by taking
 - h = 0.5 and k = 1/8 and
 - h = 1/4 and k = 1/8.

Derive explicit method to find the solution of a one dimensional wave equation (Hyperbolic equation).

- Write short notes on any two: 8.
 - Richardson's extrapolation (a)
 - Discrete Fourier transforms (b)
 - (c) Finite element method
 - Spline interpolation. (d)

5

5

5×2