Registration No. :											
--------------------	--	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 3

B. Tech

PEEC 5302 (New)

Sixth Semester (Back) Examination - 2013

MOBILE COMMUNICATION

BRANCH: EC, ETC

QUESTION CODE: B 287

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What do you mean by free space loss in mobile radio propagation?
- (b) Calculate the reduction in the transmit power in dB when the radius of the new cell becomes half of that of the old cell assuming path loss exponent, k = 4.
- (c) In M-ary FSK modulation schemes how the transmitted signals are made orthogonal? Why is this needed?
- (d) Find the far distance for an antenna with maximum dimension of 1m and operating frequency of 1800 MHz.
- (e) What is the advantage of using hexagonal cell shape over square and triangle cell shapes for cellular communication?
- (f) Define near-far problem. How it can be avoided in case of spread spectrum cellular systems?
- (g) Explain how the frequency dispersion introduces distortion into the received signal in a wireless communication system.
- (h) Define spectral efficiency of a cellular network. How it depends on the multiple access scheme used?

- (i) What is the ambiguity in the decoded output in case of PSK systems? How it is corrected?
- (j) How the power delay profile of the channel is found for small scale channel modeling?
- (a) Calculate the magnitude of the electric field at the receiver antenna located 10 km from a 50 W transmitter for space propagation. Assume the carrier frequency is 900 MHz, transmitter and receiver antenna gains are 1 and 2 respectively.
 - (b) What is the use of path loss models for a mobile communication system?

 Which path loss models are mostly used for microselfular areas?

 5
- (a) Discuss the performance of BPSK, DPSK and OPSK modulation schemes in fading multipath mobile channels. List the advantages and disadvantages of each modulation method.
 - (b) Define carrier synchronization. Explain how it is achieved in coherent detection of QPSK signal.
- Explain how the capacity of a cellular system is improved with the help of frequency reuse concept. Discuss various other mechanisms based on cellular layout and antenna design to increase the capacity of a cellular system with diagram.
- 5. (a) What causes fading to occur in mobile radio environment? Classify different types of small scale fading experienced by a signal considering the nature of the transmitted signal and the characteristics of the channel.
 - (b) For what values of T-R separation distance and antenna height, the two ray model is used for predicting large scale signal strength? Derive the path loss for the two ray model with antenna gains.
- 6. (a) Given a cellular system with hexagonal cells of radius R each. The service area is partitioned into cell clusters and frequency reuse is used from cluster to cluster. The geometric relation between adjacent co-channel cells

is described by two non negative integers i and j. With pictorial illustration determine the number of cells in each cluster and the distance between the centers of two adjacent co-channel cells.

- (b) What types of multiple access techniques are used to allow many mobile users to share a finite amount of radio spectrum simultaneously? Explain how these techniques can be grouped as narrowband and wideband systems.
- 7. (a) If 63 numbers of users share a CDMA system and each user has a processing gain of 511, then determine the average probability of error for each user. What are assumptions to be taken in determining the result?

(b) What is slotted frequency hopping 2 Explain why this may not be a realistic scenario for many FH-SS systems 5

- 8. Write short notes on any two of the following:
 - (a) Cost 231 model
 - (b) Multi carrier DS-CDMA systems
 - (c) Interference in cellular communication
 - (d) Wireless 4G networks

PEEC 5302 (New)

3

5×2