Total number of printed pages – 3

B. Tech

TRAL LES

Sixth Semester Regular Examination – 2014 FINITE ELEMENT METHOD

BRANCH: MECH

QUESTION CODE: F282

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Use standard notation as and when required

Answer the following questions :

2×10

- (a) State the factors on which the number of elements to be selected depends upon?
- (b) Describe the variational principle.
- (c) What are the characteristics of shape function?
- (d) How frame structure is different from bars?
- (e) What are global coordinates and local coordinates?
- (f) What is axisymmetric element?
- (g) What are Scalar field problems?
- (h) What is the purpose of isoparametric elements?
- Write down the stiffness matix equation for one dimensional heat conduction element.
- (j) Why preprocessing is required in FEA.
- Derive the shape functions and strain displacement matrix for a 2-noded one dimensional bar element.

- Consider a bar as shown in Figure below. The cross sectional area of the bar is 750 mm² and the Young's modulus is 200 GPa. If u₁ = 0.5 mm and u₂ = 0.625 mm, Calculate
 - (a) displacement of point P (x=450 mm).
 - (b) strain
 - (c) stress
 - (d) Element stiffness matrix.

- The plane truss shown in Figure below is composed of members having a square 15 mm x 15 mm cross section and modulus of elasticity E = 69 GPa.
 - (a) Assemble the global stiffness matrix.
 - (b) Express the finite element equation for this.
 - (c) Compute the axial stress in each element.

 From basics derive the shape functions and strain-displacement matrix for axisymmetric element with constant strain triangular elements. 6. A four noded rectangular element as shown in figure below. Evaluate the shape function at a interior point P (1,0.5). Also determine the (i) Jacobian matrix and (ii) Strain displacement matrix for this element.

Take $E = 2 \times 10^5 \text{ N/mm}^2$, poission ratio $\mu = 0.25$. Assume plane stress condition.

7. (a) Derive the stiffness matrix for one dimensional heat conduction element. 5

(b) Give the FE modeling for vibration of the system given in figure below.

8. Write short notes on any two:

5×2

10

- (a) Advantages and disadvantages of FEM
- (b) Transverse vibration formulation in FEM
- (c) The basic steps involved in FEM
- (d) Weighted residual method.