	T	200		1	
Registration No.:					

Total number of printed pages – 3

B. Tech PCEE 4302

Sixth Semester Regular Examination - 2014

ELECTROMAGNETIC THEORY

BRANCH: ELECTRICAL

QUESTION CODE: F 235

Full Marks - 70

Time: 3 Hours

RAL LIBRA

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks

Answer the following questions :

2 × 10

- (a) If $V = xza_x xya_y + yza_z$, express V in cylindrical co-ordinate system.
- (b) What do you mean by gradient of a scalar function?
- (c) Why the B field of an infinitely long, straight, current carrying conductor cannot have a component in the direction of the current?
- (d) What is the relation between vector magnetic potential and magnetic flux through a given area?
- (e) What is the significance of the negative sign in the equation $E = \operatorname{grad}(V) ?$
- (f) Under what circumstances the net voltage around a closed-loop is equal to zero?
- (g) If a vector field is solenoidal at a given point in free space, does it necessarily follow that the vector field is zero at that point?
- (h) Can Stoke's theorem be applied to closed surfaces? Justify.

Contd.

- (i) State the boundary conditions at the interface between two dielectrics.
- (j) Write the Poisson's and Laplace equations for homogeneous and nonhomogeneous fields.
- 2. Four identical 3 nC charges are located at $P_1(1, 1, 0)$, $P_2(-1, 1, 0)$, $P_3(-1, -1, 0)$ and $P_4(1, -1, 0)$ in a rectangular co-ordinate frame. Find the electric field at p(1,1,1).
- (a) Define divergence and curl of a vector field with appropriate diagram.
 Derive an expression for the divergence of the vector field in Cartesian co-ordinate system.
 - (b) Verify the divergence theorem for the function $A = r^2 a_r + r \sin \theta \cos \theta a_\theta$ over the surface of a quarter of a hemisphere defined by 0 < r < 3, $0 < \Phi < \pi/2$, $0 < \theta < \pi/2$.
- 4. Two co-axial conducting cylinders of radius 2 cm and 5 cm have a length of 1 m. The region between the cylinders is filled with a dielectric of $\varepsilon_{r1} = 2$ from r = 2cm to r = 4cm and $\varepsilon_{r2} = 3$ from r = 4cm to r = 5cm. Find the capacitance between the cylinders. Derive the formula you use.
- State Poynting theorem. What is Poynting vector? Obtain the expression for the average energy density for the time harmonic field.
 3 + 2 + 5
- 6. (a) Derive the boundary condition between two dielectrics.
 - (b) Two extensive homogeneous isotropic dielectric meet on a plane z=0. For z>0, $\varepsilon_{r1}=4$ and for z<0, $\varepsilon_{r2}=3$. A uniform electric field $E1=5a_x-2a_y+3a_z \text{ kV/m exists for } z>0. \text{ Find}$
 - (i) E_2 for z < 0.
 - (ii) The angles E_1 and E_2 make with the surface.
 - (iii) The energy densities in both the dielectrics.

6

7. (a) State and prove Stokes' theorem.

5 × 2

5

(b) Show that the vector $A = (y^2 - z^2 + 3xyz - 2x)a_x + (3xyz + 2xy)a_y + (3xy - 2xz + 2z)a_z$ is both irrational and solenoidal.

RAL LIBRAP

- 8. Write short notes on:
 - (a) Boundary conditions in electric field.
 - (b) Poynting vector and power flow.