Registration No.:			isn	100	24.		47117	5/3/59		
-------------------	--	--	-----	-----	-----	--	-------	--------	--	--

Total number of printed pages - 2

B. Tech

Sixth Semester Regular Examination - 2014

DIGITAL SIGNAL PROCESSING

BRANCH(S): EC, ETC

QUESTION CODE: F215

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

ENTRAL

(a) The following analog signal is sampled at 8,000 samples per second:

$$x(t) = \sin(1250 t) + 2\cos(1000 \pi t)$$

What is corresponding discrete time signal after sampling?

- (b) State the time shifting properties of Z-transform.
- (c) What is approximate transition width of main lobe in the rectangular window? What happens to it if you double the filter length?
- (d) State the magnitude response of the system described by

$$y(n) = 0.2Y(n-2) + X(n).$$

- (e) Draw the basic structure of 1st order digital IIR filter.
- (f) What do you mean by linear phase characteristics of FIR filter? Why IIR filters does not have linear phase characteristics?
- (g) What is condition of stability of a LTI system in Z-domain?
- (h) State the limitations of impulse invariance method for realizing IIR filter.
- (i) State circular frequency shifting property of DFT.
- (j) Establish the relation between DFT and Z-transform.

- (a) Find the Z-transform of the following signal:
 - (i) $x(n) = a^{n}u(n)$
 - (ii) $x(n) = n^2 u(n-1)$
- (b) Using convolution property, determine Z-transform of the signal 4 x(n) = (n+1) u(n)
- (a) Explain various windows used for design of linear phase FIR filter. 5 3.
 - (b) Find the impulse response of LTI system whose frequency response is 5 described as

 $H(e^{jw}) = 1$ = 0 otherwise

- (a) Compare the merits and limitations of impulse gvariance and bilinear 4. transformation methods of IIR filter design.
 - Design a single pole low-pass digital filter with 3 combandwidth 8 0.2 π, using bilinear transformation applied to the analog files Grant

$$H(s) = \frac{\Omega}{s + \Omega}$$

Where Ω is the 3-dB bandwidth of an analog filter.

5 (a) Consider the casual system 5

Y(n) = 0.75 y(n-1) - 0.125 y(n-2) + x(n) + 0.3x(n-1)Obtain direct form-I and form-II structure.

- (b) Explain linear phase and stability property of FIR and IIR filters.
- (a) The DFT of x (n) is described as $X(k) = \{1, -1 + 2j, -1, 1 + 2j\}$. Find the 6. 5 $DFT of x^2(n)$.
 - (b) Explain how DFT can be used in linear filtering the discrete signal. 5
- 5 (a) Explain Decimation in frequency FFT algorithm. 7.
 - (b) What is N in N-point DFT? Find 4-pont DFT of the discrete signal, 5 $X(n) = \{0, 1, 2, 3\}.$
- Write short notes on any two: 8.
 - (a) Linear phase FIR filter by frequency sampling method
 - (b) Stability of LTI system
 - (c) Symmetric FIR filter
 - (d) Use of DFT in linear filtering.

5×2

5

5.