Registration No.:					

Total number of printed pages - 3

B. Tech PCEC 4305

RAL LIB

Sixth Semester Regular Examination - 2014

DIGITAL COMMUNICATION TECHNIQUES

BRANCH(S): EC, ETC

QUESTION CODE: F 234

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) Write down the advantages of Huffman coding.
- (b) What is the mutual information provided about X = x, by the occurrence of the event Y = y?
- (c) Sketch the power spectrum of a typical BPSK modulated signal.
- (d) Find the minimum bandwidth required to transmit 1 Mbps of data if it is to be transmitted using 8-PSK.
- (e) Draw the signal space diagram for 8-QAM.
- (f) Can you opt for a non coherent demodulation for a BFSK signal? Justify.
- (g) What is an AWGN channel model?
- (h) Does a digital receiver need equalization always? Justify.
- (i) What are the disadvantages of a DSSS system?
- (j) What is the relation between information content measured in nats and in bits?

- 2. (a) Design a Huffman code for a DMS having source symbols $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$ with probabilities of $\{0.35, 0.3, 0.2, 0.1, 0.04, 0.005, 0.0005\}$ respectively.
 - (b) Prove that $\ln x \le x 1$ and also demonstrate the validity of this inequality by plotting $\ln x$ and x 1.
- (a) For which input probability distribution is the value V (X; Y) is a maximum?
 Prove your statement mathematically. X is the input and Y is the output.

1+5

- (b) How do you achieve channel capacity through the use of orthogonal signals? Discuss.
- 4. (a) In a communication system, the transmitted pulse is x(t) having a duration of T with unit energy and the received pulse is $h(t) = x(t) + \alpha x(t-T)$. Find out the equivalent discrete time equivalent white noise filter model. 5
 - (b) Find out the Fourier transform of a sequence given as $x_n = \sqrt{1 \alpha^2 \alpha^n}$, $\alpha = 0, 1, \dots$ Sketch the same.
- 5. (a) Derive the average energy per symbol in an M-ary PAM system. 5
 - (b) Find out a set of orthonormal functions to represent the following waveforms:

$$x_{1}\left(t\right) = \begin{cases} 1, & 0 \le t \le 2 \\ 0, & \text{elsewhere} \end{cases}, \ x_{2}\left(t\right) = \begin{cases} 1, & 0 \le t \le 2 \\ -1, & 2 < t \le 3 \\ 0, & \text{elsewhere} \end{cases}$$
 and

$$x_3(t) = \begin{cases} 1, & 0 \le t \le 1 \\ -1, & 1 < t \le 2 \\ 0, & \text{elsewhere} \end{cases}$$

- 6. (a) Suggest a suitable transmitter for DSSS that uses QPSK.
 - (b) How do you take care of a narrowband interference in an SS system? You may derive suitable mathematical expressions if required.
 5

Contd.

5

- (a) Evaluate the cross correlation coefficient between adjacent signal points for signal waveforms constructed from binary codes.
 - (b) Evaluate the phase of the carrier in a given time interval corresponding to an MSK signal that uses a rectangular pulse of duration T.
- 8. Write short notes on any two:

/ 5×2

- (a) Linear equalization
- (b) CDMA
- (c) Correlator receiver
- (d) Frequency hopping.