Registration No.:					

Total number of printed pages - 2

B. Tech

Sixth Semester Regular Examination – 2014 STRUCTURAL ANALYSIS - II

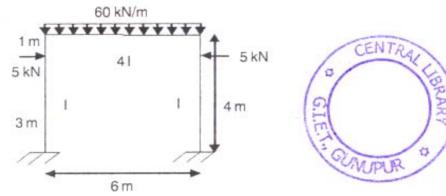
BRANCH: CIVIL

QUESTION CODE: F 214

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any **five** from the rest.


The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) Why limit analysis of structure is preferred to exastic analy
- (b) Define ductility.
- (c) Define load factor.
- (d) What do you mean by a mechanism?
- (e) State distribution theorem.
- (f) Define plastic hinge.
- (g) A continuous beam ABC has two spans AB = 5 m, BC = 4 m. A point load 100 kN acts at the centre of the AB, whereas a u.d.l of 25 kN/m acts throughout BC. End A is fixed, C is simply supported. I_{ab}: I_{bc} = 3:1. Find the distribution factor for the members.
- (h) Write the generalized slope deflection equation for a continuous beam.
- (i) Find the shape factor for a rectangle.
- (j) Explain virtual work principle.

2. Analyse the portal frame shown in figure using moment distribution method. 10

- A fixed beam ABC has two spans AB = 6 m and BC = 4 m. A UDL of 30 kN/m acts on span AB. On BC, a point load of 20 kN acts at 1 m from B. Analyse the beam using slope deflection method. Also draw the bending moment diagram.
- 4. Find the shear shape factor for a hollow rhombus.
- (a) Compute the plastic section modulus, elastic section modulus for a box section with outside depth 30 cm, wall thickness 1 cm and width 15 cm.
 - (b) Compute the shape factor for the above section. Find the plastic moment Mp, if the yield stress is 2500 kg/cmsq?
- 6. A continuous beam ABCD has three spans, AB = 3 m, BC = 4 m, CD = 4 m. And A is simply supported and D is fixed. A point load of 10 kN acts at 1 m from A on span AB. On BC a udl of 5 kN/m acts. On span CD a point load of 20 kN acts at the center. I_{ab}: I_{bc}; I_{cd} = 1.5: 2: 1. Determine the support moments at A, B, C, D using Kani's method.
- 7. (a) Draw the schematic diagram of a suspension bridge.
 - (b) Find the expression for horizontal tension in a cable. 6
- Write short notes on :

 2.5×4

4

10

- (a) Plastic moment
- (b) Stiffness and flexibility
- (c) Degree of redundancy
- (d) Two hinged arch.