Registration No.:	
-------------------	--

Total number of printed pages - 3

B. Tech

HSSM 3302

Sixth Semester Regular Examination – 2014 OPTIMIZATION IN ENGINEERING

BRANCH: AUTO, CIVIL

QUESTION CODE: F319

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsor and any five from the rest.

The figures in the right-hand margin indicate marks

Answer the following questions :

2×10

- (a) What is the difference between feasible solution and basic feasible solution?
- (b) What is a pivot element ?. How it is obtained ?
- (c) When does the simplex method indicate that the LPP has unbounded solution?
- (d) What are the advantages and disadvantages of Big-M method?
- (e) Write the mathematical model of Assignment problem.
- (f) Differentiate between transportation problem and assignment problem.
- (g) What do you mean by integer programming problem.?
- (h) What are the basic characteristics of a queuing system?
- (i) Explain Quadratic programming.
- (j) Explain genetic algorithm.

Minimize
$$Z = -3x_1 - 2x_2$$

subject to $2x_1 + 3x_2 \ge 30$;
 $3x_1 + 2x_2 \le 24$
 $x_1 + x_2 \ge 3$
 $x_1, x_2 \ge 0$

(b) Solve the following LPP using Big-M method:

Maximize
$$Z = -2x_1 - x_2$$

Subject to $x_1 + x_2 = 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$.

(a) Using simplex dual method, solve the following LPF

Minimize
$$Z = 3x_1 + x_2$$
, subject to $x_1 + x_2 \ge 1$ $2x_1 + 3x_2 \ge 2$ $x_1, x_2 \ge 0$.

(b) Using duality, solve the following LPP:

Minimize
$$Z = x_1 + x_2$$

subject to $2x_1 + 3x_2 + 4x_3 \ge 2$
 $5x_1 + 2x_2 + x_3 = 1$
 $x_1, x_2 \ge 0$

4. Solve the following LPP using revised simplex method:

$$\label{eq:definition} \begin{array}{ll} \text{Minimize} & Z = x_1 + 2x_2 \\ \text{subject to} & 2x_1 + 5x_2 \ \geq \ 6 \\ & x_1 + x_2 \geq \ 2 \\ & x_1 \ , \ x_2 \ \geq \ 0. \end{array}$$

5

5

5

10

5. (a) Solve the following Transportation problem having following cost matrix.

Source/Destination	Α	В	С	D	Supply
1	19	30	50	10	7
2	70	30	40	60	9
3	40	8	70	20	18
Demand	5	8	7	14	

(b) Find the assignment of machines to the job that will result in maximum profit.

Machines/jobs	А	В	C	D
1	320	350	⁻ 400	280
2	400	250	300	220
3	420	270	340	300
4	250	390	410	350

- 6. Solve the following problem using Fibonacci search method for 5 iterations. 10 Minimize $Z = x^3 2x 5e^x$ in the interval (0,20)
- 7. Minimize $Z = (x_1 3)^2 + (x_2 4)^2$ Subject to $2x_1 + x_2 = 3$ using project gradient method.
- 8. Solve the following non-linear programming problem using Kuhn-Tucker conditions.

Maximize
$$Z = 8x_1 + 10x_2 - x_1^2 - x_2^2$$

Subject to $3x_1 + 2x_2 = 6$
 $x_1, x_2 \ge 0$

5