Registration No. :											
Total number of printed pages – 3									В.	Tech	
										HSSM	3302

Sixth Semester Regular Examination – 2014 OPTIMIZATION IN ENGINEERING

BRANCH(S): CSE, EEE, ELECTRICAL, ENV, FASHION, FAT, IT, MINING, MME, PLASTIC, TEXTILE

QUESTION CODE: F279

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks

Answer the following questions :

2×10

- (a) Define a LPP. What do you mean by decision variables in a LPP.
- (b) Define unbounded solution, basic solution in a LPP.
- (c) How can we resolve degeneracy in a LPP?
- (d) What are the advantages of duality?
- (e) Write the mathematical model of a Transportation problem.
- (f) Explain Transshipment problem.
- (g) What is the difference between mixed integer programming and pure integer programming?
- (h) Define transient and steady state of a queuing system.
- (i) What are Kuhn-Tukker conditions?
- (j) Explain genetic algorithm.

- 2. (a) Solve the following LPP using Big- M method:
 - Minimize $Z = 4x_1 + x_2$
 - Subject to $3x_1 + x_2 = 50$
 - $4x_1 + 3x_2 \ge 24$
 - $x_1 + 2x_2 \le 3$
 - $\chi_1, \quad \chi_2 \ge 0$
 - (b) Using duality, solve the following LPP:
 - $Minimize \qquad Z = 2x_1 + 9x_2 + x_3$
 - Subject to $x_1 + 4x_2 + 2x_3 \ge 5$
 - $3x_1 + x_2 + x_3 \ge 4$
 - $x_1, x_2, x_3 \ge 0$
- 3. Using revised simplex method to solve the to lowing LPP
 - Maximize $Z = X_1 + 2X_2 + 3X_3 X_4$
 - Subject to $x_1 + 2x_2 + 3x_3 = 15$
 - $2x_1 + x_2 + 5x_3 = 20$
 - $x_1 + 2x_2 + x_3 + x_4 = 10$
 - $x_{1}, x_{2}, x_{3}, x_{4} \ge 0$
- 4. (a) Solve the following Transportation problem to maximize the profit:

Origin/Destination	A m	В	C	Capacity
	2	estavo 7 . m. ja	4	5
2	3	3	1 .	8
3	5	4	7	7
4	i 1 mod	ono 6	2	14
demand	7	9	18	

5

5

10

5

(b) Four machines are available to assign four jobs. Find the assignment of machines to the job that will result in maximum profit.

Machines/jobs	А	В	С	D
1	10	12	19	11
2	5	10	7	8
3	12	14	13	11
4	8	15	11	9

- 5. (a) Write the steps to solve the integer programming problem.
 - (b) In a super market, the average arrival rate of customers is 10 in every 30 minutes, following poission process. The average time taken by a cashier to list and calculate the customers purchase is two and a half minutes following exponential distribution. Find the probability that the queue length exceeds six.
- 6. Solve the following problem using Golden search method using six denations: 10 Minimize $Z = x^3 2x 5e^x$ in the interval (0, 25)

7. Minimize
$$Z = 4x_1^2 + 2x_2^2 + x_3^2 - 4x_1x_2$$

Subject to $x_1 + x_2 + x_3 = 15$, $2x_1 - x_2 + 2x_3 = 20$, $x_1, x_2, x_3 = 0$

Using Lagrange method.

8. Solve the following Quadratic Programming problem: 10

Minimize
$$f(x) = -6x_1 + 2x_1^2 - 2x_1x_2 + 2x_2^2$$

Subject to $-x_1 - x_2 = -2$
 $x_1, x_2 = 0$

10

5