Registration No.:											
-------------------	--	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 3

B. Tech

PCCS 4305

Sixth Semester Regular Examination – 2014 COMPILER DESIGN

BRANCH: CSE

QUESTION CODE: F 252

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) What is a syntax Tree?
- (b) What is the significance of semantic analyzer?
- (c) What changes should be made in the semantic analyzer to add type casting?
- (d) What is DAG? What are its applications?
- (e) Write a regular expression to describe unsigned numbers.
- (f) What is meant by Peephole optimization?
- (g) Why SLR and LALR are more economical to construct than canonical LR?
- (h) What do you mean by dangling reference?
- (i) What is meant by shot-circuit or jumping code?
- (j) What is the difference between activation of the procedure and the activation record?
- 2. (a) The regular expression (cc* | dd*) is given. Construct NFA for the expression and convert this NFA into DFA.
 - (b) Explain in detail the various phases of compiler. Consider the following fragment of C code.

float i, j; i=i*10+j+2;

Write the output at all phases of the compiler for this C code.

5

- (a) What is inherited attribute? Write the syntax-directed definition with inherited attributes for type declaration for list of identifiers. Show the annotated parse tree for the sentence real id1, id2, id3.
 - (b) Compare three different storage allocation strategies.
- 4. Show that the following grammar:

5

 $S \rightarrow Aa \mid bAc \mid dc \mid bda$

$$A \rightarrow d$$

is LALR (1) but not SLR(1).

- (a) Using back patching, generate an intermediate code for the following expression:A < B OP C < D AND P < Q
 - (b) What is DAG? Write an algorithm to construct DAG from the block of three address code. Construct the DAG for the following basic block: 5

$$a:=b+c$$

$$b := a - d$$

$$c := b + c$$

$$d := a - d$$

- 6 (a) Discuss different symbol table organizations. Explain how scope rules and the block structure of a programming language influence symbol table organization strategies.
 - (b) Generate the code for the following statement for the target machine (target machine is a byte addressable machine with 4 bytes to a word and N general purpose registers). Assume all variables are static. Assume three registers are available.

$$a[i][j]=b[i][k]*c[k][j]$$

- (a) Explain different code optimization techniques used in compilation process to generate optimized code.
 - (b) What is the purpose of next use information in code generation? Explain with examples.

- (a) Write the role of error detector in compilation process with example.
 Discuss different errors in Lexical phase.
 - (b) Discuss LL(1) parsing method for the following grammar:

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' | \in$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' | \in$
 $F \rightarrow (E) | id$

Consider the predictive parsing table and show the stack implementation for the input string id+id*id.