Registrat	ion No. :										
Total num	ber of prin	ited page	s-3							B. FEME	Tech 6301
Sixth Semester Regular Examination - 2015											
FINITE ELEMENT METHOD											
BRANCH: MECH											
QUESTION CODE: J 440											
Full Marks - 70											
			Tim	e:3 H	ours		1		132		
Answe	er Question The fi	n No. 1 w igures in t	/hich is the righ	comp t-hand	ulsory marg	and in ind	any icate	five mark	from \$3	the re	est.
1. Ansv	wer the follo	owing qu	estions	:			-	GUI			2×10
(a)	During disc node?							is ned	essa	ry to p	lace a
(b)	State the p					energ	y.				
(c)	What do yo	ou mean l	y cons	titutive	law?						

- Why polynomial types of interpolation functions are mostly used in FEM? (d)
- What is meant by degrees of freedom? (e)
- What are the types of loading acting on the structure? (f)
- Write down the expression of stiffness matrix for a truss element. (g)
- Write down the stiffness matrix equation for one dimensional heat (h) conduction element.
- Write the post processing steps for FEM. (i)
- Name two FEA softwares. (i)
- (a) Describe the general steps of the finite element method. 2.

5

. 10

- Derive the strain displacement matrix for a 2-noded one dimensional bar (b) element.
- Consider the bar as shown in figure below. Calculate the following: 3.
 - Nodal displacements (i)
 - Element stresses (ii)
 - (iii) Support reactions.

Take $E = 2 \times 105 \text{ N/mm}^2$; P = 400 kN.

4. Consider a three bar truss as shown in figure below. It is given that $E = 2 \times 10^5 \text{ N/mm}^2$. Calculate the following:

10

(i) Nodal displacements

(ii) Stress in each member

(iii) Reactions at the support

Take Area of element 1, 2 and 3 are 2000 mm², 2500 mm² and 2500 mm²

respectively

 Assemble the Strain-Displacement matrix for the CST element shown in figure below. Take, t = 25 mm and E = 210 GPa. The co-ordinates are shown in units of millimeters.

FEME 6301

6. (a) For the isoparametric four noded quadrilateral element shown in figure below, determine the cartesian co-ordinates of point P which has local co-ordinates $\xi = 0.25$ and $\eta = 0.25$.

- (b) The nodal co-ordinates for an axisymmetric triangular element are given below:
 - $r_1 = 15$ mm, $z_1 = 15$ mm; $r_2 = 25$ mm, $z_2 = 15$ mm; $r_3 = 35$ mm, $z_3 = 50$ mm. Determine [B] matrix for that element.
- (a) Derive the stiffness matrix for one dimensional heat conduction element.
 - (b) Give the FE modeling for vibration of the system given in figure below:

- 8. Write short notes on any two:
 - (a) The applications of FEM.
 - (b) The basic steps involved in FEM.
 - (c) Variational Methods.
 - (d) Constant Strain Triangle elements.

 5×2