				tamina a n	DCEC 4304
Total number of printed pages – 3					B. Tech
Registration No. :		-		24	10

Sixth Semester Regular / Back Examination – 2015 DIGITAL SIGNAL PROCESSING

BRANCH: EEE

QUESTION CODE: J 283

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

STRAL LIBO

- (a) State and prove State the scaling property of the z transform.
- (b) How delay and advance elements are expressed in discrete z-domain?
- (c) What is approximate transition width of main lobe in the rectangular window? What happens to it if you double the filter length?
- (d) How many real multiplication and real additions are required to compute 16 point DFT using decimation in frequency (DIF) algorithm?
- (e) Find out the magnitude of transfer function of the system whose impulse response (at n = 0) is described as h(n) = {1.1, 0, 2, 1}
- (f) Under what conditions the pair of zeros of FIR filter will be complex conjugate?
- (g) How ripples in the pass band of FIR filters can be eliminated?
- (h) What do you mean by frequency warping in digital filter? How this effect can be eliminated?

- (i) Express Unit step function U(n) in terms of in terms of impulse functions δ (n).
- State and proof linearity property of DFT.
- 2. (a) Consider the LTI system described by the equation

$$x(n) = a^{n}u(n) - b^{n}u(-n-1)$$

What conditions must hold on a and b for Z-transform to exist.

(b) Find inverse Z-transform of

$$X(z) = \log(1 - 2z) \qquad |z| > |a|$$

- (a) Find 4-point IDFT of the signal, X(k) = {1,1,0,1} and sketch magnitude response.
 - (b) The DFT of x(n) is described as X(k) = {1, −1 + 2j, −1, 1+2j,}. Find the DFT of x²(n).
- 4. (a) Convert the analog filter with the system function

$$H(s) = \frac{s + 0.1}{(s + 0.1)^2 + 9}$$

Into a digital IIR filter using impulse invariance method.

- (b) How frequency wrapping occurs in designing IIR filters using bilinear transformation method? Explain.
 5
- (a) Derive two conditions that must be fulfilled for FIR filter to behave as linear phase.
 - (b) Consider the casual system

$$Y(n) = 0.75y(n-1) - 0.125y(n-2) + x(n) + 0.25x(n-2)$$

Obtain parallel structure of the system.

5

6

5

Determine the coefficient of linear phase FIR filter length M=15, which has 6. a symmetric unit sample response and frequency response that satisfies the 10 condition

$$Hr\left(\frac{2\pi K}{15}\right) = 1$$
 $K = 0,1,2,3$
= 0.4 $K = 4$
= 0 $K = 5, 6, 7$

- Explain Decimation in time FFT algorithm. 7.
 - Find 4-pont DFT of the discrete signal, $X(n) = \{0, 1, 2, 1\}$. using DIT algorithm.
- 5×2 Write short notes on any two of the following: 8.
 - The LMS Algorithm (a)
 - Overlap add method in linear filtering
 - (c) System Identification
 - Difference in Structure of FIR and IIR filters. (d)

5