•										
				1						
Registration No. :										
regionalion ivo										

Total number of printed pages - 3

B. Tech

PCME 4307

Sixth Semester Back Examination – 2015 ADVANCED MECHANICS OF SOLIDS

BRANCH: MECH

QUESTION CODE: M 240

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

 2×10

- (a) Define principal plane.
- (b) Explain state of pure shear.
- (c) Name various yield criteria used.
- (d) Define elastic strain energy.
- (e) Define Asymmetrical bending with an example.
- (f) Define Shear Centre with an example.
- (g) Explain shrink fit in Compound cylinders.
- (h) Explain about Notch sensitivity.
- (i) Name various uses of composite materials.
- (j) Explain about fracture toughness.
- 2. (a) The state of stress at a point is characterized by the components

$$\tau_{ij} = \begin{vmatrix} 12.31 & 4.2 & 0.84 \\ 4.2 & 8.96 & 5.27 \\ 0.84 & 5.27 & 4.34 \end{vmatrix}$$
 MPa

Find the values of the principal stresses and their directions.

5

(b) The state of stress characterized by ζij is given as

$$\tau_{ij} = \begin{vmatrix} 10 & 4 & 6 \\ 4 & 2 & 8 \\ 6 & 8 & 6 \end{vmatrix} MPa$$

Resolve the given state into a hydrostatic state and a pure shear state. Determine the normal and sheaking stresses on an octahedral plane.

- (a) Derive the differential equations of equilibrium in 3-D with neat sketches. 5 3.
 - What do you understand by plane state of stress? Derive the expressions (b) for principal stresses in plane state of stress.
- A cantilever beam of I-section is used to support the loads inclined to the vertical 4. axis, as shown in figure below. Compute the stresses at the corners A, B, C and D of the wall section. What is the inclination of the neutral axis at the wall section?

A 5 tonne crane hook has a trapezoidal section as shown in the figure below. 5. Find the stress on inside fibres and on the outside fibres at the section AB.

10

20 cm

- (a) Derive equations for circumferential and radial stress developed in thick walled cylinder under plane stress condition subjected to external and internal pressure. Assume proper symbols of the variables used.
 - (b) A thick-walled circular cylinder of internal diameter 0.2 m is subjected to an internal pressure of 100 MPa. If the maximum permissible stress in the cylinder is limited to 150 MPa, determine the maximum possible external diameter.
- (a) Briefly describe about the Fatigue tests.
 - (b) Describe about the basic modes of fracture.
- Write short notes on any two:
 - (a) Theories of Failure
 - (b) Theorem of virtual work
 - (c) Micromechanics of FRP Composites
 - (d) Gerber and Soderberg criteria.

5

5