Registration No. :					

Total number of printed pages - 2

B. Tech

PCEE 4302

Sixth Semester Regular Examination – 2015 ELECTROMAGNETIC THEORY

BRANCH: ELECTRICAL

QUESTION CODE: J 205

Full Marks - 70

Time: 3 Hours

ENTRA

Answer Question No. 1 which is compulsory and any **five** from the rest.

The figures in the right-hand margin indicate marks

Answer the following questions :

2×10

- (a) Mention the importance of a unit vector.
- (b) Mention the conditions for the field to be irrotational.
- (c) Differentiate between conduction current and displacement current.
- (d) Find out the gradient of a scalar $\emptyset = x^2 + y^2 + 2xz$
- (e) State the Stokes's theorem. What do you infer from it?
- (f) Write Laplace's equation in cylindrical coordinates.
- (g) What do you mean by homogeneous and isotropic medium?
- (h) Mention the importance of a unit vector.
- (i) What is the physical definition of the curl of a vector field?
- (j) How the electromagnetic waves propagate through the wave guide?
- (a) Deduce the Maxwell's equation for sinusoidal time varying fields.

5

(b) Given $\bar{A} = \hat{x}(2x+3y) - \hat{y}(2y+3z) + \hat{z}(3x-y)$ Determine the unit vector parallel to \bar{A} at point P(1, -1, 2)

3. Write different form of Maxwell's equation. Are all four Maxwell's equations independent? Explain. 10 Justify that the net Electric field within a conductor is always zero. 5 4. State and prove the Gauss's theorem. Explain why it is called the divergence (b) 5 theorem. 5. Find a mathematical expression for electrostatics in terms of field quantities. 5 State Coulomb's law. Four like charges of 30 µ C each are located at the four (b) corners of a square, the diagonal measures 8m. Find the force on a 100 $\,\mu C$ located at 3m above the centre of the square. 5 Differentiate between linear, elliptical and circular polarization. 5 6. (a) ENTRAL (b) 5 State and explain Biot-Savart's Law. Starting with Ampere's law, derive Maxwell's equation in integral form. 7. (a) 5 Discuss the Cartesian coordinate system. 5 (b) 5×2 8. Write short notes on any two of the following: (a) Magnetic vector potential. Pointing Theorem. (b) (c) Divergence Theorem Static and Time varying fields. (d)