otal manipor or printed pages							PECI 530						
Total number of printed pages – 3											B. Tech		
Registration No. :													

Sixth Semester Regular Examination - 2015

TRANSPORTATION ENGINEERING - II

BRANCH: CIVIL

QUESTION CODE: J 456

Full Marks - 70

Time: 3 Hours

CENTA

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks:

Answer the following questions :

2×10

- (a) What are the functions of rails?
- (b) Discuss the factors on which the sleeper density depends?
- (c) Determine the optimum thickness of the stone ballast required below sleepers of density M+7 on a BG track.
- (d) Mention the major requirements of an ideal permanent way.
- (e) Draw a neat sketch to show a point rail and a splice rail.
- (f) What are the engineering principles of signaling?
- (g) What do you mean by minimum circling radius?
- (h) Enumerate the factors controlling taxiway layout.
- (i) What do you understand by optimum location of exit taxiway?
- (j) What are the imaginary surfaces for the airports?

- 2. Explain the necessity of gradients on a railway track. Discuss all the types of gradients. What is the necessity of grade compensation at curves?
 If a 8° curve track diverges from a main curve of 5° in an opposite direction in the layout of a BG yard, calculate the superelevation and the speed on the branch line, if the maximum speed permitted on the main line is 45 km/h.
- Differentiate between the hauling capacity and the tractive effort of a locomotive.
 Give the expression for the Total Train Resistance.
 - Calculate the maximum permissible load that a BG locomotive with three pairs of driving wheels bearing an axle load of 22 tonnes each can pull on a straight level track at a speed of 80 km/h. Also calculate the reduction of speed if the train has to run on a rising gradient of 1 in 200. What would be the further reduction in speed if the train has to negotiate a 43 curve on the rising gradient? Assume the coefficient of friction to be 0,2.
- 4. (a) What do you mean by corling of wheels? Discuss the necessity and effects of coning of wheels and tilting of rails.
 - (b) What is creep? What are the possible causes and effects of creep? Explain various preventive and remedial measures that can be taken.
- 5. (a) Explain the necessity of sleepers in railway track. What are the desirable qualities of good sleepers? What would be the expression for sleeper density if the rail length used in a track is 19m and there are 22 sleepers under one rail length?
 - (b) What are the functions of points and crossings in railway track layout? Draw a neat diagram of simple left-hand turnout showing its various component parts.
- (a) Enumerate the various factors which you would keep in view while selecting a suitable site for an airport.
 - (b) What is Minimum Turning Radius and its objective? Describe with the help of a neat sketch, how to determine the Minimum Turning Radius.

- 7. (a) What is a wind rose diagram? What is its utility? What are its types?
 Explain each type?
 5
 - (b) The length of a runway under standard condition is 1620 m. The airport site has an elevation of 270m. Its reference temperature is 32.9°C. If the runway is to be constructed with an effective gradient of 0.2 percent, determine the corrected runway length.
- 8. Write short notes on any two:

 5×2

- (a) Equilibrium Cant and Cant deficiency
- (b) Rail failures
- (c) Component parts of an aeroplane
- (d) Take-off climb surface.

