Registration No. :										
--------------------	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 2

B. Tech

FESM 6302

Sixth Semester Back Examination – 2015 ADVANCE NUMERICAL METHODS BRANCH : CHEM

QUESTION CODE: M 394

Full Marks - 70 Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

(a) Find a piecewise linear interpolating polynomial of the following data:

X	1	2	3	4
у	2	4	8	16

- (b) Write the central difference formula to find higher derivatives.
- (c) Explain Richardson's extrapolation.
- (d) Explain inverse power method.
- (e) What is difference between Fast Fourier transform and discrete Fourier transform?
- (f) Define Accelerating convergence.
- (g) What is an explicit method and implicit method in solving the ordinary differential equation?
- (h) Write the formula for Milne-Simphon predictor- corrector method.
- (i) Check the nature of the following partial differential equation. $2u_{xx} + 5u_{xy} - 3u_{yy} + 4u_x + 5 = 0$
- (j) Explain wave equation with initial and boundary conditions.
- 2. (a) Find a Hermite interpolating polynomial for the following data points:

Х	0.4	0.5	0.7	0.8
F(x)	-0.9162	-0.6931	-0.3566	-0.2231
F'(x)	2.50	2.00	1.43	1.25

(b) Find the population of the year 1900 using piecewise quadratic interpolation of the following data:

year	1891	1901	1911	1921	1931
Population	26	35	42	48	55
in crore					

5

3. (a) Find f'(x) at x=3 of the following data values:

X	0	1	2	3	4	5
у	3	5	8	10	13	16

Using central difference and also using Richardson's extrapolation.

(b) Using Romberg integration, evaluate
$$I = \int_{0}^{1} \frac{\log(x+1)}{\sqrt{x(1-x)}} dx$$
.

4. (a) Find eigen value of the following matrix using Rayleigh Quotient method: 5

$$A \begin{bmatrix} 2 & 2 & 1 \\ -5 & 9 & -3 \\ -4 & 4 & 1 \end{bmatrix}$$

(b) Find the eigen value of matrix A close state the eigen \sqrt{a} ue $\lambda = 10$ of the

matrix
$$A = \begin{bmatrix} 20 & 9 & 1 \\ 8 & 8 & 6 \\ 4 & 5 & 10 \end{bmatrix}$$
.

5. (a) Explain the steps of QR method giving an example.

5 ta: 5

5

5

(b) Find the Fourier approximating polynomial of the following data:

х	0	π/2	π	3π/2	2π
у	0	1/4	1/2	3/4	1

6. (a) Using Adam Bashforth 2^{nd} order, find y(1) of the initial value problem $dy/dx = y - x^2$, y(0) = 0.4.

(b) Using ABM 3rd order method, solve the initial value problem $\frac{dy}{dx} = \frac{y}{x^2} + 1$, y(0) = 1 in the interval [0,1].

7. Using implicit method, solve the heat equation $u_t - u_{xx} = 0$, for 0 < x < 1, t > 0. The initial conditions are u(x,0) = x(1-x), for 0 < x < 1 with boundary conditions u(0,t) = 0, u(1,t) = 1, for t > 0 for 3 time step.

Explain wave equation. Derive the iterative scheme for solution of wave equation using (i) explicit method, (ii) implicit method.