Registration No. :	3	. 12.22	C	11.8	1 to 2 to		 1 1 12	EQUA.	
Total number of printed pages – 3									B. Tech
									PECI 5301

Sixth Semester Regular Examination – 2015 DESIGN OF STEEL STRUCTURE

BRANCH : CIVIL

QUESTION CODE: J 291

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Use of IS 800 and Steel Table are permitted CONDERS.

Assume suitable additional data wherever required.

1. Answer the following questions:

 2×10

- (a) State two advantages and two disadvantages of use of steel structures.
- (b) For Fe 410 W steel, what is the yield stress value and what is the ultimate tensile stress value?
- (c) Classify various types of rolled steel Tee sections.
- (d) Distinguish between a standard I section and a built up I section used as steel beam members. What is/are the parameter/parameters to choose the appropriate section?
- (e) How can you avoid the shearing or crushing failure of a plate joint subjected to tensile force?
- (f) Classify the types of bolted connections.

- (g) State the difference between a slab base and a gusseted base.
- (h) State the various types of strength considerations made in design of tension members.
- Name the various types of stiffners provided in a plate girder.
- (j) How can you calculate the design strength of bolts in a joint?
- Two plates each of 12 mm thickness are to be connected with each other using M20 bolts of grade 4.6 through a lap joint. Calculate the bolt value. Assume any other data if required.
- If two plates of each 10 mm thickness are connected by M16 bolts of grade 4.6 at a spacing of 40 mm, calculate the efficiency of the joint.
- A tie member of a roof truss consists of 2 ISA 100 x 75 x 8, connected on either side of 12 mm gusset plate. The member is subjected to a factored axial pull of 300 kN. Design the welded connection.
- Design a simply supported beam of effective span 8 m to carry a loading of 20 kN/m including the dead load. The compression flange of the beam is laterally supported. The beam rests over stiff end bearings of 150 mm at both the ends.

10

- Calculate the load carrying capacity of a strut consisting of 2 ISA 60 × 60 × 10
 placed back to back if the length of the member is 3 m and it is welded to a gusset
 plate of 12 mm thickness.
- A steel column ISHB 250 @ 537 N/m carries a factored load of 1200 kN. Design a slab base for the column, if the column is supported on a pedestal of M20 concrete.

8. Write brief notes on any four of the following:

2.5×4

- (a) assumptions of welded connections.
- (b) Lug angle
- (c) Web buckling and web crippling
- (d) Lateral torsional bucking
- (e) Limit states of serviceability.

