Registration No. :	ntad			<u> </u>				B. Tech
Total number of pri	mea	page	5-3	•				
								DCC6 4304

Sixth Semester Regular Examination – 2015 OPERATING SYSTEM

BRANCH: CSE

QUESTION CODE: J 202

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) What are the main advantages of multiprogramming?
- (b) What is Throughput, Turnaround time, Waiting time and Response time?
- (c) Consider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock free.
- (d) Differentiate between a page and a segment.
- (e) Differentiate between internal and external fragmentation.
- (f) What is a Process control block? Explain all its components.
- (g) What is the difference between synchronization and mutual exclusion?
- (h) What is swapping and what is its purpose?
- Differentiate between Logical and Physical file system.
- (j) What do you mean by logical address and physical address?
- (a) Distinguish between multiprogramming and multiprocessing. What are the key motivation for the development of each?

(b)	Differentiate between long-term scheduler and short-term schedule						
	is the purpose of medium-term scheduler?	5					

 (a) Assume, we have the workload as shown below. All 5 processes arrive at time 0, in the order given. The length of the CPU burst time is given in milliseconds

Process : P1 P2 P3 P4 P5

Burst Time : 10 29 3 7 12

Considering the FCFS, SJF and RR (time quantum=10 ms) scheduling algorithms, which algorithm would give the minimum average waiting time.

(b) Explain Dining Philosophers Problem and give its solution.

Consider the following snapshot of a system:

	A	lloc	ati	on		<u>Available</u>						
	A	В	C	D	A	В	C	D	A	В	C	D
PO	0	0	1	2	0	0	1	2	1	5	2	0
P1	1	0	0	0	1	7	5	0				
P2	1	3	5	4	2	3	5	6				
P3	0	6	3	2	0	6	5	2				
P4	0	0	1	4	0	6	5	6				

Answer the following questions using the Banker's algorithm

- (i) What is the content of the matrix Need?
- (ii) Is the system in safe state? If so, what is the safe sequence?
- (iii) If a request from a process P1 arrives for (0, 4, 2, 0) can the request be granted immediately?
- (a) Give an example of a simple resource deadlock involving three processes and three resources. Draw the appropriate resource allocation graph.
 - (b) Explain the principles of segmentation with examples.

 (a) When do page fault occurs? Describe the actions taken by the operating system, when a page fault occurs.

(b) Given the memory partitions of 600K,200K,250K,500K(in order) how would each of the first-fit, best-fit and worst-fit algorithms place processes of 128K,581K,411K,221K(in order)? Which algorithm makes the efficient use of memory?

5

5

10

 (a) Suppose that the head of a moving hard disk with 200 tracks, numbered 0 to 199, is currently serving a request at track 143 and has just finished a request at track 125. The queue of requests is kept in the FIFO order-86,147,91,177,94,150,102,175,130

What is the total number of head movements needed to satisfy these requests for the following disk-scheduling algorithms?

- (a) FCFS Scheduling
- (b) SSTF Scheduling
- (c) SCAN Scheduling.
- (b) Discuss the linked allocation and index allocation schemes for a file allocation. Compare the index allocation scheme with the contiguous allocation scheme
- Answer any two of the following :
 - (a) Disk Structure
 - (b) RAID Structure
 - (c) Thrashing
 - (d) I-Nodes.

5

5×2

PCCS 4304