Registration No. :										
--------------------	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 2

B. Tech

2×10

FESM 6302

RAL LIBA

Sixth Semester Regular Examination – 2015 NUMERICAL METHODS BRANCH : CHEM

QUESTION CODE: J 483

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

- 1. Answer the following questions:
 - (a) Explain peicewise interpolation.
 - (b) Define Hermite function.
 - (c) Explain Romberg integration.
 - (d) What is the central difference formula to find f'(x), f''(x), f''(x), $f^{iv}(x)$.
 - (e) What is difference between Fast Fourier transform and discrete Fourier transform?
 - (f) Define Accelerating convergence.
 - (g) What is predictor-corrector method?
 - (h) Check the nature of the following partial differential equation $2u_{xx} + 5u_{xy} 3u_{yy} + 4u_x + 5 = 0$
 - (i) Explain wave equation with initial and boundary conditions.
 - (j) Explain stability of a numerical method.
- 2. (a) Find a Hermite interpolating polynomial for the following data points

X	0.4	0.5	0.7	0.8
F(x)	-0.9162	-0.6931	-0.3566	-0.2231
F'(x)	2.50	2.00	1.43	1.25

(b) Find the piecewise quadratic polynomial for the following data points (1,3),(0,-2),(1,-4),(2,6).

X	2	5	8	11	
Y	5	9	14	17	

5

- 3. (a) Using Romberg integration, Evaluate $I = \int_{0}^{2} \frac{e^{x} \cos x}{1 + x^{2}} dx$. 5
 - (b) Estimate the value of $f'(\Pi/2)$ for $f(x)=\cos x/x$, using Richardson's extrapolation method taking central difference formula as base method.
- - (b) Find the eigen value of matrix A closest to the eigen value λ = 10 of the

$$matrix A = \begin{bmatrix} 20 & 9 & 1 \\ 8 & 8 & 6 \\ 4 & 5 & 10 \end{bmatrix}$$

- 5. (a) Explain the steps of QR method giving an example.
 - (b) Find the Fourier approximating polynomial of the following data:

X	0	Π/2	П	3П/2	2Π
У	0	1/4	1/2	3/4	1

- 6. (a) Using Adam Moulton 3^{rd} order, find y(1) of the initial value problem 5 $dy/dx = y \sin x y$, y(0) = 0.4.
 - (b) Using Milne's–Simpson's method, solve the initial value problem $\frac{dy}{dx} = \frac{y}{x^2} + 1, y(0) = 1 \text{ in the interval } [0,1] .$
- 7. Using implicit method, solve the heat equation $u_t u_{xx} = 0$, for 0 < x < 1, t > 0. The initial conditions are $u(x,0) = x^3$, for 0 < x < 1 with boundary conditions are u(0,t) = 0, u(1,t) = 1, for t > 0 for 3 time step.
- Explain wave equation. Derive the iterative scheme for solution of wave equation using
 - (i) explicit method,
 - (ii) implicit method.

5

5

5