Total number of printed pages - 3

B. Tech

HSSM 3302

CENTRAL !

Sixth Semester Back Examination – 2015 OPTIMIZATION IN ENGINEERING

BRANCH: MECH

QUESTION CODE: M 124

Full Marks - 70

Time: 3 Hours

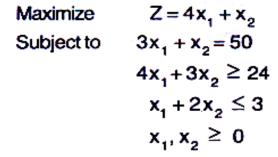
Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) Define slack and surplus variable.
- (b) Obtain the dual problem of the following primal LP problem


Maximize
$$Z = 8x_1 + x_2$$

subject to $x_1 + 2x_2 + 4x_3 \ge 2$
 $x_1 + 2x_2 + 4x_3 = 1$
and $x_1, x_2 \ge 0$

- (c) What is pivot element?
- (d) Why do you perform a sensitivity analysis?
- (e) What do you mean by unbalanced assignment problem? How do you handle such situation in order to find a solution?
- (f) Explain Markovian Queuing model.
- (g) What are different types of queuing discipline?
- (h) What are the primary uses of Kuhn-Tucker necessary and sufficient conditions?
- Define linear, non-linear functions with examples.
- (j) What is quadratic programming? Give one example.

(a) Solve the following LPP using graphical method: 2.

Maximize
$$Z = 3x_1 + 5x_2$$

Subject to $3x_1 + 2x_2 \le 20$
 $x_1 + 3x_2 \le 8$
 $2x_1 - 4x_2 \le 5$
 $x_2 \le 2$
 $x_1, x_2 \ge 20$

Solve the following LPP using Big-M method: (b)

Using duality, solve the following LPP: 3. (a)

Minimize
$$Z = 4x_1 + 2x_2 + 3x_3$$

subject to $2x_1 + 4x_3 \ge 5$,
 $2x_1 + 3x_2 + x_3 \ge 4$
 $x_1, x_2, x_3 \ge 0$

Using dual Simplex method, solve the following LPP: (b)

Maximize
$$Z = 5x_1 + 6x_2$$
,
subject to $x_1 + x_2 \ge 2$
 $4x_1 + x_2 \ge 4$
 $x_1, x_2 \ge 0$

Using revised simplex method to solve the following LPP: 4.

Maximize
$$Z = x_1 + 2x_2 + 3x_3 - x_4$$

subject to $x_1 + 2x_2 + 3x_3 = 15$
 $2x_1 + x_2 + 5x_3 = 20$
 $x_1 + 2x_2 + x_3 + x_4 = 10$
 $x_1, x_2, x_3, x_4 \ge 0$

 (a) Solve the following Transportation problem to minimize the transportation cost:

Source/Destination	Α	В	С	D	Supply
1	19	30	50	10	7
2	70	30	40	60	9
3	40	8	70	20	18
Demand	5	8	7	14	

(b) Four machines are available to assign four jobs. Find the assignment of machines to the job that will result in maximum profit.

Machines/jobs	Α	В	С	D
1	1	4	6	3
2	9	7	10	9
3	4	5	11	7
4	8	7	8	5

 Explain the general search technique. Solve the following problem using Golden search method in 5 iterations.

Minimize $Z = 2x^2 + 33/x$ in the interval (0, 5)

7. Minimize $Z = 4x_1^2 + 2x_2^2 + x_3^2 - 4x_1x_2$

Subject to $x_1 + x_2 + x_3 = 1.5$

$$2x_1 - x_2 + 2x_3 = 20$$

$$x_1, x_2 \ge 0$$

using Lagrange method.

8. Solve the following Quadratic programming using Wolfe's method: 10

Maximize
$$Z = 2x + y - x^2$$

Subject to
$$2x + 3y \le 6$$

$$2x + y \le 4$$

$$x, y \ge 0$$

10