· · · · · · · · · · · · · · · · · · ·	otal number of pri					
Registration No. :	egistration No. :					

Sixth Semester Back Examination – 2015 HEAT TRANSFER BRANCH : MECH

QUESTION CODE: M 400

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand marginal dicate marks.

Answer the following questions :

2×10

- (a) How radiation is different from convection?
- (b) Differentiate between black body and gray body.
- (c) Differentiate between counter flow and parallel heat exchanger.
- (d) What do you mean by Fourier number?
- (e) Show the velocity profile in laminar region and turbulent region.
- (f) Mention the boundary layer thickness formula for laminar and turbulent region over a flat plate.
- (g) White paper is a black body. Justify.
- (h) What is laminar sub layer? What is the velocity profile in this region?
- (i) What is fin? Write two applications where fins are used.
- (j) Explain thermal diffusivity. Give its physical significance.

- (a) What do you understand by critical thickness? Derive the critical thickness value of insulation over a cylindrical conduit.
 - (b) Define the following terms:

5

5

- (i) Prandtl number
- (ii) Biot number
- (iii) Nusselt number.
- 3. (a) Explain Effectiveness of a fin. How is different from fin efficiency?
 - (b) A rectangular plate is 120 cm long in the direction of flow and 200 cm wide. The plate is maintained at 80°C when placed in nitrogen that has a velocity of 2.5 m/s and a temperature of 0°C. Determine:
 - (i) the average heat transfer coefficient
 - (ii) the total heat transfer from the plate. The properties of Nitrogen at 40° C are $\rho = 1.142$ kg/m³, Cp = 1.04 kJ/kgK, v = 15.63×10^{-6} m²/s and k = 0.0262 W/mK.
- 4. A 1.6 m high and 3 m wide double-pane window consists of two 8 mm thick layers of glass(k = 78 W/m K) separated by a 15 mm wide stagnant air space (k = 0.026 W/mK). Determine the rate of heat transfer through this window and temperature of inside surface, when the room is maintained at 25°C and the out side air is at 0°C. Take the convection coefficient on the inside and out side surfaces of the window as 10 and 40 W/m²K respectively. Find the overall heat transfer coefficient.
- 5. The overall temperature rise of the cold fluid in a cross flow heat exchanger is 20°C and overall temperature drop of the hot fluid is 30°C. The effectiveness of heat exchanger is 0.5. The heat exchanger area is 1 m² and overall heat transfer coefficient is 60 W/m² K. Find out the rate of heat transfer. Assume both fluids are mixed.

- 6. (a) Explain and differentiate between Film wise and drop wise condensation. 5
 - (b) Explain and differentiate between flow boiling and pool boiling.

5

- (a) Explain about Kirchhoff's law, Planck's law, Wein's law and Stefan Boltzman law.
 - (b) An enclosure measures 1.5 m x 1.7 m with a height of 2 m. The walls and ceiling are maintained at 250°C and the floor at 130°C. The walls and ceiling have an emissivity of 0.82 and the floor 0.7. Determine the net radiation to the floor.
- 8. Write short notes on any two of the following:

5×2

- (a) Forced convection and natural convection
- (b) Lumped heat analysis
- (c) LMTD and NTU method.