Reg	istra	tion No. :											
Tota	al nur	nber of pr	inted p	ages –	2						ī		Tech = 4302
		Sixt	h Sen	nester	Bac	k E	kami	inati	on -	- 20	15		
			ELE	CTRO	MA	GNE	TIC	THE	ORY	•			
			1	BRAN	CH:	ELE	CTR	ICA	Ļ				
				QUES	TION	COD	E:M	178					
				١	Full N	larks	- 70						
				-	Γime :	: 3 H	ours	1	ENTR	AL LIS	2		
	Ans	swer Ques The		. 1 whice in the i							1 1	e rest	•
1.	Ans	wer the fol	lowing	questic	ons :			li	ે હા	WPVP			2×10
	(a)	Mention	he imp	ortance	e of a	unit	vecto	r.					
	(b)	What is a	waveg	uide?V	Vhat is	s its in	nport	ance	and a	pplic	ations	?	
	(c)	Define ele	ectric fie	eld inter	nsity a	nd ele	ectric	flux c	lensit	y.			
	(d)	State unio	ueńess	theore	m.								
	(e)	What is th	e cond	ition for	the fi	eld to	be re	alizal	ble as	stati	c mag	netic	field?
	(f)	What do y	ou mea	an by T	EM wa	aves?	?						
	(g)	Define Re	eflection	n coeffic	ient.								

What do you mean by surface impedance of a conductor?

Define intrinsic impedance and give its physical significance.

Define Poynting vector.

(h)

(i)

(j)

2.	(a)	A uniform plane electromagnetic wave propagating in air is given by							
		$E = i_1 x Cos[wt - 2(\pi/\lambda)y]$							
		Derive by using the Maxwell's equations, the expression for the vect	or						
		magnetic field.	5						
	(b)	A sphere of radius 2 cm having volume charge density of e given l	ЭУ						
		$r_u = \cos^2 q$. Find the total charge Q contained in the sphere.	5						
3.	Wha	What are guided waves? Write down some of its applications, Derive the field							
	com	ponent present in the TE ₁₀ mode of propagation in guided wave.	10						
4.	(a)	Prove that in a travelling plane electromagnetic wave, there is a definite rate	io						
		between the amplitudes of E and H and find this ratio.	5						
	(b)	Is Gauss's Law useful in finding the electric field vector of a finite lin	ne						
		charge ? Explain.	5						
5.	.(a)	State and explain Ampere's circuital Law in integral form.	4						
	(b)	An ideal lossless transmission line of Z0 = 60 ohms is connected	to						
		unknown Z_{L} . If SWR = 4, find Z_{L} , reflection coefficient and transmission	nc						
		coefficient.	6						
6.	(a)	Starting with Maxwell's equations derive the wave equation for E and H	in						
		free space.	5						
	(b)	State and prove Laplace's equation for a simple medium in vector notatio	n.						
			5						
7.	(a)	State and prove continuity equation.	5						
	(b)	What is boundary condition for electrostatics potential at an interface	Э						
		between two different dielectric media ?	5						
8.	(a)	Derive the expression for attenuation factor for TEM waves between paral	e						
		conducting planes.	5						
	(b)	The transmission line of characteristic impedance of 50 ohms is terminate	ed						
		with a load of 100 + i 100 ohms. Find the reflection coefficient and SWR							