Registration No.:			-								
Total number of printed pages – 3										В.	Tech
•				BCEC 4304							

Sixth Semester Regular / Back Examination – 2015 DIGITAL SIGNAL PROCESSING

BRANCH(S): AEIE, IEE

QUESTION CODE: J 203

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

ENTRAL

- (a) Express the transfer function of a 1st order digital FIR filter using z-transform.
- (b) State the scaling property of the z transform.
- (c) What is paley-weiner theorem? What is its importance?
- (d) State the magnitude response of the system described by

$$y(n) = 0.5Y(n-1) + X(n-2)$$

- (e) How many real multiplication and addition is required for computation of N-point DFT?
- (f) What are the two conditions that must be satisfied for a filter to behave as linear phase characteristics?
- (g) How ripples in the pass band of FIR filters can be eliminated?
- (h) State the limitations of bilinear transformation method for realizing IIR filter.
- State two practical difficulties that are generally encountered during designing of FIR filter.
- (j) What is adaptive in adaptive filter? How it is different from classical filter?

2. Find the Z-transform of the following signal using property. (a)

$$x(n) = 1$$
 for $0 < n < 11$
= 0 otherwise

Determine the response of the system (b)

Determine the response of the system
$$y(n) = 0.8y(n-1) + 0.2Y(n-2) + X(n)$$
 to the input signal $x(n) = \delta(n) - \delta(n-1)$

- Explain the Pole -Zero pattern of FIR filters with suitable example. 3. (a)
 - Find the impulse response of LTI system whose frequency response is described as 5

$$H(e^{jw}) = 1$$
 For $|w| < \Pi/4$
= 0 otherwise

- Establish the relation between ω and Ω using bilinear transformation. And 4. (a) then, bring out a mapping between them. 5
 - Design a single pole low pass digital filter with 3-dB bandwidth of 0.2Π , (b) using bilinear transformation applied to the analog filter 5

$$H(s) = \frac{\Omega}{s + \Omega}$$

Where Ω is the 3-dB bandwidth of an analog filter.

5. (a) Consider the casual system

$$Y(n) = 0.75y(n-1) - 0.125y(n-2) + x(n) + 0.3x(n-1)$$

Obtain direct form I and form-II structure.

Explain the frequency sampling structure of FIR filter. (b)

The DFT of x(n) is described as $X(k) = \{1, -1 + 2j, -1, 1+2j\}$. Find the DFT 6. (a) of x2(n). 5

6

4

5

(b) What is N-point DFT? Find 4-pont DFT of the discrete signal,
X(n) = {0,1,2,1}.

5

7. (a) Explain Decimation in frequency FFT algorithm

5

(b) What is adaptive filter? How it can be used to identify an unknown system?

5

8. Write short notes on any two of the following:

5×2

- (a) Adaptive Noise Cancelling
- (b) Stability of LTI system
- (c) Windows used in designing FIR filter
- (d) Use of DFT in linear filtering.