Registration No.:						
		_				-

Total number of printed pages - 2

B. Tech

PCMT 4303

CENTRA

Sixth Semester Regular / Back Examination - 2015

IRON MAKING

BRANCH(S): MM, MME

QUESTION CODE: J 143

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks:

Answer the following questions :

2×10

- (a) How can you evaluate a flux containing 97% CaCO₃ and rest SiO₂ to be used in a blast furnace with basicity 1.5?
- (b) Find out the theoretical Fe content of hematite and magnetite. Which one is preferred in blast furnace and why?
- (c) What are the effects of top charging of ore fines on blast furnace operation?
- (d) Basicity of bosh slag is higher than final slag in B/F Justify.
- (e) What is shortness of slag? State its importance in blast furnace.
- (f) Dolomite is a good replacement of lime in fluxed sinter Justify.
- (g) What is the effect of oxygen enrichment of blast and high top pressure on Silicon reaction in blast furnace?
- (h) Why carbon blocks are used as refractory material in hearth?
- (i) What are the effects of temperature and pressure on Boudouard equilibrium reaction?
- (j) Why "slag off" is necessary in LDAC process?
- Consider a blast furnace with the following input data (in wt%) with 99.5% reduction and 0.5% slagging off. Find out
 - i. Weight of iron ore required
 - ii. Weight and composition of slag

Iron Ore	Fe ₂ O ₃	SiO ₂	MnO	Al ₂ O ₃	MgO	P ₂ O ₅	H ₂ O
=	78	8.4	0.6	5	1.2	1.7	5.1
Coke	С	SiO ₂		Al ₂ O ₃			H ₂ O
(900kg/t)	88	9	*	1	*	*	2
Flux	CaCO ₃	SiO ₂	MgCO ₃				
(500kg/t)	96	2	2				
Pig Iron	Fe	С	Si	Р	Mn		
	92.7	4	2	0.9	0.4		

- Consider a blast furnace producing pig iron with 95% Fe and 3.6% C consuming 3. 800kg of coke per ton hot metal. If the coke has 85%C and 15% ash, find out the air blast required and blast furnace gas produced with CO:CO2 ratio 28:12.
- What is the role of burden distribution inside the B/F on its productivity? 4 (a) 5
 - Construct and comment the plot between RAFT and oxygen enrichment of (b) blast (for 21 to 25% oxygen) at input blast temperature 1000°C from the following data:

Heat capacity of combustion=2300 K Cal/kg C.

Heat content of C= 540 K Cal.

Heat capacity of air=0.333 K Cal /Nm³ °C.

Heat capacity of gas= 0.338Kcal/Nm3 °C at 1000°C.

- Describe the two bell charging system in B/F. Mention the advantages of bell 5. less charging over bell charging system.
 - Draw a neat sketch for simplified material flow in and out a of modern B/F. (b) Mention functions of coke in B/F. Give the composition of a typical Indian pig iron.
- Describe the physico-chemical reactions taking place in DR processes. 6. (a) Differentiate between Coal based and Gas based DR process 5
 - With a neat sketch describe the SL/RN process in brief. (b)
- Describe the processes of starting and shutting down a B/F for relining. 7. (a)
 - Briefly describe the three stage gas cleaning system in blast furnace plant (b) with suitable sketches. 5
- Write short notes on any two of the following: 8.

Molecular theory of slag

- (a)
- (b) Alumina problem
- (c) Accretion formation in rotary kiln
- (d) Alternative fuels in B/F.

5

5×2

CENTRAL