Regi	istra	tion No:	
Tota	l Nu	mber of Pages: 02 210 210 210 210 B.TECH PCEE4302	210
21Q A1	nsw	6 th Semester Regular / Back Examination 2015-16 ELECTROMAGNETIC THEORY BRANCH: ELECTRICAL Time: 3 Hours 210 Max Marks: 70 Q.CODE: W196 Ver Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.	210
Q1 ₂₁₀	a)	Answer the following questions: (2 x 10) Transform the Cartesian co-ordinates x=2, y=1 and z=3 into spherical	210
210	f) g)	coordinates. State the magnetic boundary conditions. Determine the force per unit length between two long parallel wires separated by 5cm in air and carrying currents of 40A in the same direction. Distinguish conservative field from non-conservative field and give examples for both. 210 210 210 210 210 210 210 210 210 210	210
Q2 210		From the fundamental laws, obtain the Maxwell's equations in integral form and convert them into differential form. Derive and expression for self inductance of co-axial cable of inner radius 'a²³⁰ and outer radius radius 'b'. (5) A rectangular loop (8×4)in, carrying 10A current is placed on z=0 plane.	210
Q4 210	a) b)	Find the field intensity at (4,2,0)m. Define Gradient, Divergence and Curl. Explain their significance. State superposition theorem in relevance to the field theory and derive the equation for total electric field intensity. (5) (5)	210

					(5)	
Q5 a) b)	Define depth of penetration Three concentrated charge an equilateral triangle of of the force on one charge	10 cm side. Find	the magnitude a	vertices of nd direction	(5)	210
Q6 a) b)	Derive the equation of col Given A= 5 ax and B= 4a and B is 45 degree.	e between A	(5) (5)			
Q7₀ a) b)	State and explain Ampere Explain Biot's Savart law		(5) (5)	210		
Q8 a) b) c) d)	Write Short Notes (Any Uniqueness theorem. Pointing Theorem. Stoke's theorem Prove that $\nabla \cdot \nabla \times H = 0$		210	210	(5 x 2)	210
*						
210	210 2	10 210	210	210		210
	*					
210	210	210 21	210	210		210
210	210	210 2	210 210	210		210
						#