Registration No.									
------------------	--	--	--	--	--	--	--	--	--

Total number of printed pages - 02

B.TECH PCMI 4301

6th Semester Regular / Back Examination 2015-16 TRANSPORT PHENOMENA

BRANCH: Chemical
Time: 3 Hours
Max Marks: 70
Question Code: W554

Answer Question No. 1 which is compulsory and any FIVE from the rest.
The figures in the right-hand margin indicate marks.
Assume suitable notations and any missing data wherever necessary.
Answer all parts of a question at a place.

1.	(a) (b) (c) (d)	Answer the following questions: Classify types of fluids in shear stress-sl How viscosity and thermal conductivity in case of low density gases? Define Stoke's law. Write equation of continuity.		2 x 10	
210	(e) (f)	Define Fourier's Law of heat conduction Specify the interface boundary condition heat transport problems.	in a system for solving	210	
	(g) (h) (i) (j)	State Eucken formula for thermal condu- Write Fick's Law of diffusion with consta How diffusivity varies with temperature in Write shell mass balance equation.	nt concentration.		
2 10 2.	(a)	Derive an expression for velocity profile flows between two vertical walls, separ		210	
	(b)	taking origin at midpoint of 2B distance. Estimate the viscosity of liquid benzene and specific molar volume=89.0 cm ³ /g-n	06 04		
3. 210	(a)	Derive an expression for shear st Newtonian fluid is flowing inside a pipe of	04		
210	(b)	One method for determining the radius measuring the rate of flow of a Newto tube. Find the radius of a capillary from the Length of capillary tube: Kinematic viscosity of liquid: Density of liquid: Pressure drop in the horizontal tube: Mass rate of flow through tube:	nian liquid through the	²¹⁰ 06	_
			5 U 11g, 555		

4. A heated sphere of radius R is suspended in a large container of motionless body of fluid. Show that, $Nu = \frac{hD}{K} = 2$.

06

Write combined heat flux equation and explain each term.

04

5. (a) Write three heat source name used in heat transport analysis. 03

The heat generated per unit volume in a parallel plate is given

by: $S_v = \mu \left(\frac{v}{b}\right)^2$, $\frac{w}{m^3}$ where, v is the upper plate velocity; b is the distance between two plates. Taking origin at the lower

plate with boundary condition x = 0, $T = T_0$, and x = b, $q_x = 0$,

07

 $T - T_0 = \frac{\mu v^2}{k} \left[\frac{x}{b} - \frac{1}{2} \left(\frac{x}{b} \right)^2 \right].$

A viscous fluid with temperature independent physical 6. properties is in fully developed laminar flow through a vertical tube of radius R. At z=0, the fully developed flow is achieved. For z<0 the fluid temperature is uniform at $T=T_1$. For z>0, heat is added radially at a constant, uniform flux q_0 , at the tube surface. Make a shell energy balance to obtain the differential

> equation for T(r,z) in the zone z>0. Develop the non-dimensional differential equation in terms of the following variables

 $\Theta = (T-T_1)/(q_0R/K)$,

£=r/R,

 $\phi = Kz/(\rho C_p v_{max} R^2)$

10

7. Define Prandtl, Schmidt, and Lewis numbers.

03

A hollow solid sphere has its inner $(r = R_1)$ and outer $(r = R_2)$ (b) R₂)surfaces maintained at concentrations C_{A1} C_{A2}respectively. Obtain the expression for concentration profile in the solid at steady-state condition.

07

8. Write short notes on any **TWO**:

5 x 2

- (a) Equation of motion
 - Convection heat transfer (b)
 - (c) Types of diffusion
 - Importance of transport phenomena (d)