R	egistr	ation No.									
210		210		210	210		210		210		210
	al nu	mber of prin	ted pag	es - 02					B.TE		
		THE SECTION OF THE PARTY OF THE SECTION						P	CCH43	305	
		6th Samos	tor Do	aular / E	Back Exam	ninatio	n 201	15-16			
					TION ENG			10-10			
		OTT			: Chemical						
210		210		210Time:	3 Hours		210		210		210
				Max M	arks : 70						
					Code :W1						
1	Answ	er Question	No. 1 W	hich is co	mpulsory a	nd any	FIVE	from ti	he rest		
	Δςςι	ne זוקט me suitable	res in u notatio	ne rignt-ni ns and an	and margin v missing o	lata who	e mai ereve	r nece	ssary.		
	7554	An	swer al	I parts of	a question	at a pla	ce.				
210		210		210	210		210		210		210
1.		Answer the	following	a augetion					2 x	10	
. 1.	(a)	Define elem				example	е.		- 1		
	(b)	What is the	significa	nce of act	vation energ	gy?					
	(c)	State the ad	vantage	es of mixed	flow reacto	r.	50°C	than a	4		
	(d)	How much	taster is	ethane pro	nceeds with	aneat 6	/ation	enera	y ₂₁₀		
210		500°C?Pyrolysis of ethane proceeds with an activation energy of about 300kJ/mol.									, 210
	(e)	Define Selec				1 - 1 - 1					
	(f)	Differentiate The design	betwee	n a plug-fl	ow reactor a	nd a bai	ich rea	actor. durine	7		
	(g)	the reaction.				Tionly va	riadioi	dami	9		
	(h)	Define a c				em with	n a s	suitable	е		
		example.	1 (-218-4I	d - d:66	tial analy	io in		210		21(
210	(i)	Differentiate State Collision			and different	liai ariai	y515.				
	(j)										
2.		With a neat	graphi	cal repres	entation, de	rive and	disc	uss th	е		
		integrated r second orde	ate exp	pression f	or irreversing	ole bimo	DIECUI	ar typi well a	9		
*		conversion.	er react	1011 111 161	1115 01 00110	Cittiation	1 45	WOII G		10	
210		240		210	210		210		210		210
3.	(a)	Derive the	perform	ance equa	ation for the	e case i	in wh	ich tw	0	00	
	(h)	equal-sizedF A gaseous	FRS ar	e arranged	on series.	= 200 n	nol/l e	nters	а	08	
	(b)	flow reactor	in which	h the read	ction A + B	→5R o	ccurs	at To:	=		
		1000K and F								02	
											-

210	(a)	first order reaction.	²¹⁰ 06	210
	(b)	In a batch reactor, reactant is 70 % converted after 8 minand 90% converted after 18 min. Find the rate expression to represent this reaction if $C_{AO} = 1 \text{ mol/l}$.		
5.	(a)	The rate of reaction triples on doubling the concentration. Find the reaction order.	03	
210	(b)	An aqueous solution of ethyl acetate is to be saponified with sodium hydroxide. The initial concentration of ethyl acetate is g/l and that of caustic is 0.1 N. The values of second order rate constant at 0°C and 20°C are 0.235 and 0.924 (I/mol)(min ⁻¹ respectively. Calculate the time required to saponify 95 % este	5 e)	210
		at 40°C if the reaction is irreversible.	07	
6. 210		Derive and explain graphically in details, the performance equation for steady-state mixed flow reactor for constant as well as for variable density systems.	210	210
_	(-)			
7.	(a)	For an initial monomer concentration of 0.04 and 0.8 mol/l 20% of the monomer gets disappeared in 34 min in a homogeneous isothermal liquid polymerization. What is the	a .	
210	(b)	rate expression for the disappearance of the monomer? What reaction schemes and conditions could be suggested to have maximum concentration of R for the following parallel	210	210
		reactions? $A+B\rightarrow R$ (desired), $r_R = 25.e^{-273/T}.C_A{}^{0.5}C_B$ $A+B\rightarrow R$ (undesired), $r_S = 300.e^{-2000/T}.C_AC_B$	06	
8.		Write short notes on any TWO :	5 x 2	
210	(a) (b) (c) (d)	RTD measurement 210 210 210 Space time and space velocity Recycle reactor Variable volume batch reactor	210 .	210
	10310 (2)			
210		210 210 210 210	210	210