Registration no:										
------------------	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 2

<u>B.Tech</u> FESM6302

6th Semester Regular / Back Examination 2015-16 ADVANCE NUMERICAL METHODS

BRANCH: CHEM Time: 3 Hours

Max Marks: 70 Q.CODE: W572

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2 x 10)

- a) What is Richardson's Extrapolation?
- **b)** Find the piecewise quadratic interpolating polynomial for the following data

Х	-2	-1	1	3	4
f(x)	25	21	18	27	30

c) Find the value of f''(0.5) of the following data

C 210	0.3	0.5	0.7°	0.9 210
f(x)	0.15	0.185	0.267	0.314

- d) Find the cubic polynomial that fits $y(x) = x^4$ at x=0,2,3.
- e) What is difference between interpolation and curve fitting?
- f) What is Shifted power method?
- g) Evaluate $\int_0^2 e^x dx$ using the Simpson's rule with h=1/2 and compare with exact solution.
- h) Write the truncation error in the Adams-Bashforth methods.
- i) What is Discrete Fourier Transforms?
- j) Explain the implicit method ..
- Q2 a) Obtain the cubic spline fit for the data under the end conditions f''(0) = f''(3) = 0. (5)

Х	0	1	2	3
f(x)	1	2	33	244

b) Using the following data table estimate the value of f(-0.5) and f(0.5) using piecewise cubic Hermit interpolation

x	f(x)	f'(x)
-1	1	-5
0 210	1	1
1	3	7

- Q3 a) Derive the formula for the first derivative of $y = f(x) o f O(h^2)$ using (i) forward difference approximations and (ii) backward difference approximations (5)
 - b) When $f(x) = \sin(x)$, estimate $f'(\frac{\pi}{4})$ with $h = \frac{\pi}{12}$ suing the above formula. Obtain the bunds on the truncation error. (5)
- Q4. Find the Eigen values of matrix using QR method. $A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 2 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ (10)

Find f'(3) using Richardson extrapolation

- b) Compute $\int_{0.1}^{0.2} \frac{x^2}{c_{osx}} dx$ using Romberg Method. (5)
- Solve the initial value problem with h=0.2 in the interval [0, 0.4] $\frac{dy}{dx} = -2xy^2, y(0) = 1$ 210 210 210 210
 - a) Using Adam's Predictor-corrector method (5)
 - b) Using Milne predictor-corrector method. (5)
- Q7 The vibrating string problem follows the following differential equation $u_{tt}=u_{xx}$ with boundary conditions u(0,1)=u(1,t)=0; $u(x,0)=\sin\pi x$, $u_t=0$;
 - a) Discretize the above equation using finite difference method. (5)
 - **b)** Find the solution of this vibrating problem with h=0.2, k=.1 for t=0.3. (5)
- Q8 Write short notes on any two: (5 x 2)
 - a) Matrix form of FFT and Mixed-Radix FFT
 - b) Basic QR method and Better QR method
 - c) Crank-Nicolson method
 - d) Finite Element method 210