Registration no:

Total Number of Pages: 02

210

B.Tech PCBT4305

6th Semester Regular / Back Examination 2015-16 PLANT BIOTECHNOLOGY

BRANCH: BIOTECH Time: 3 Hours Max Marks: 70

Q.CODE: W205

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 ₂₁₀	a)	Answer the following questions: What is somaclonal variation?	(2 x 10)			
	b)	Majority of the cereals are highly recalcitrant to Agarobacterium-mediated transformation and so direct transformation methods have been developed to transform such plants. Which direct transformation method is applicable to intact plant tissues?				
	c)	Write the name of two secondary metabolites of plant origin that is having commercial importance?				
710	d) e)	What is the optimum pH range for suitable <i>in vitro</i> growth of explant? What do you mean by suspension culture? Why suspension culture is used for secondary metabolite production?		ř		
	f)	What is surface sterilisation? Write the name of two chemical sterilant used for sterilization of explant?				
	g) h)	What is Embryo rescue? Why it is used? What is golden rice? Name the transgene used in the development of golden				
210	i) j)	Which gene mediate the transfer of T-DNA from Ti plasmid into plant cell? Which transformation technique is most suitable for stable transformation in plants?				
Q2		What are symmetric and asymmetric hybrids? Describe different methods for isolation and purification of protoplast?	(10)			
Q3°	a) b)	Write short notes on: 210 210 210 210 210 210 210 210 210 210	(5) (5)			
Q4		Write an essay on different methods used in productions of transgenic plants?	(10)			
Q5	a)	Give the general features of tissue culture media composition, and discuss the	(5)			
210	b)	roles of various growth regulators? Discuss in detail the procedure and applications of micropropagation method.	(5)			

Q6 210	a) b)	Briefly Explain Totipotency Herbicide resistan	t transgenic plants	210	210	24.0	(5) (5)
Q7	a) b)	Give a detail ac emphasis on immed Describe the different transgenic plants	unotherapeutic dru ferent genes that that are insect re	igs. have been used	d for the produ	action of	(5) (5)
		have been used fo	r this purpose.	210	210	210	210
210		210	210	210			0)
Q8	a) b) c) d)	Briefly explain (at GURT Classification and Golden rice Single cell culture	biosynthesis of a	ulkaloids			x 2)
210		210	210	210	210	210	210
210		210	210	210	210	210	210
		* ;					
210		210	210	210	210	210	210
210)	210	210	210	210	210	210
a							
210	0	210	210	210	210	210	210
					•		