Total Number of Pages: 02

<u>B.Tech</u> PEBT 5302

6th Semester Regular Examination – 2016-17 MOLECULAR MODELING AND DRUG DESIGNING BRANCH: BIOTECHNOLOGY Time: 3 Hours Max Marks: 70 Q.CODE: Z695 Answer Question No.1 which is compulsory and any FIVE from the rest. The figures in the right hand margin indicate marks.

Q1		Answer the following questions:	(2 x 10)
	a)	What is global minimum in protein conformation?	
	b)	Define van der waals force of interaction.	
	c)	Define the electrostatic potential	
	d)	What is "implicit" versus "explicit" solvation?	
	e)	What is a lead module?	
	f)	Why do you always energy minimize before running MD?	
	g)	Why does a protein's structure depend on the pH of the solution?	
	h)	What is the role of bond stretch and angle bending in molecular modeling?	
	i)	What is template-based modeling (TBM)	
	j)	What are the differences between local and global alignment?	
Q2	a)	How ab-initio modeling used for prediction of protein domains?	(5)
	b)	Write a note on tertiary structure of protein and its importance	(5)
Q3		What is structure based drug designing? Explain the <i>De-novo</i> Ligand design in details.	(10)
Q4	a)	Describe the amphipathic (hydrophobic/hydrophilic) patterns found in alpha helices and beta strands. Explain why they exist.	(5)
	b)	What is Lipinski's rule of 5?	(5)

Q5	a)	Explain molecular docking. In molecular docking, what is the difference between ligand and cofactor?	(5)
	b)	Explain molecular descriptors and their types? Describe physicochemical parameter and molecular descriptors.	(5)
Q6	a)	Explain conformation Searching of Polypeptides.	(5)
	b)	Explain QSAR and differentiate between 2D and 3D QSAR.	(5)
Q7		Explain molecular modeling and its applications biomolecular modeling problems.	(10)
Q8		Write Short Notes (Any two)	(5 x 2)
	a)	Pharmacophores	
	b)	Weak interactions	
	c)	Combinatorial libraries	

d) Protein threading