Registration no:											
------------------	--	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

B.Tech PEEI5302

Page

6thSemester Regular / Back Examination 2016-17 ANALOG SIGNAL PROCESSING BRANCH(S):AEIE, EIE, IEE Time: 3 Hours Max Marks: 70 Q.CODE: Z676

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1		Answer the following questions:	(2 x 10)
	a)	What is the need of frequency compensationin Op-amp?	
	b)	Mention the advantages of active filter over passive filter.	
	c)	An Op-amp has a slew rate of $25V/\mu$ sec. How long will it take for the output to change from 0 V to $15V$?	
	d)	What is a precision diode?	
	e)	What are the limitations of an ideal differentiator?	
	f)	Draw an Op-amp circuit whose output will be V1-V2 +V3-V4.	
	g)	Define PSRR w.r.t. Op-amp.	
	h)	If the differential amplifier has an input $v1 = 1050 \ \mu V$ and $V2 = 950 \ \mu V$ with CMRR as 60dB. What is the error in the differential output?	
	i)	Define Lock range and Capture range in PLL.	
	j)	Draw the circuit of a unity follower using Op-amp? What is its importance in electronic circuits?	
Q2	a)		(5)
	b)	can be obtained using low pass, high pass filter and a summing circuit. Draw an inverting integrator using switched capacitor and Derive the expression forits time constant.	(5)
Q3	a)	The input current to a current to voltage converter using Op-amp varies	(5)
		from 600µA to 1 mA. If the feedback resistor $R_f = 10 \text{ K}\Omega$, determine the	
		variation of output voltage.	
	b)	What are the different sources of noise in Op-amp?How they can be	(5)
		minimized?	
Q4	a)	Explain with block diagram representation for multiplication of two	(5)
		analog signals V_x and V_y using logarithmic summing technique.	
	b)	What are switched expecter filters? Explain with diagram What are its	(5)

b) What are switched capacitor filters? Explain with diagram. What are its advantages and disadvantages?

- Q5 a) Draw a precision half wave rectifier circuit using Op-amp and explain its (5) operation.
 - b) The noise present at the input of a two port receiver stage is 1µW. The noise figure (F) is 0.5dB. The receiver gain is 10¹⁰. Calculate the noise power contributed by the two port and the output available noise power.
- Q6 a) Draw and explain the working of Isolation amplifier. Mention its (5) applications.
 - b) Explain with its circuit diagram, how Op-amp can be used as a basic (5) anti-logarithmic amplifier.
- Q7 Discuss the characteristics of Instrumentation amplifier. Draw an (10) Instrumentation amplifier system using a transducer bridge. Explain how this can be used as a Temperature Indicator.

(5 x 2)

Q8 Write short answer on any TWO:

- a) Sample and Hold circuit
- b) Switched capacitor Filter
- c) Zero crossing detector
- d) Peak detector using Op-amp