-										
	-	-	-	-	-	-	-	-	-	-

6th Semester Regular / Back Examination 2016-17 **DIGITAL SIGNAL PROCESSING** BRANCH(S): AEIE, ECE, EEE, EIE, ETC, IEE Time: 3 Hours Max Marks: 70 Q. CODE: Z121 Ar Question No 1 which is compulsory and any five from the

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1 Answe

Answer the following questions:

(2 x 10)

- a) A LTI system with characteristics equation $Z^3 0.81 Z = 0$ Find whether the system is stable or not.
- **b)** A casual signal is represented as,

 $X(n) = \{2, 1, 0, 5\}.$

Express the signal as the sum of impulse function $\delta(n)$.

- c) With proper justification show that impulse function can be used as test signal for a DTS system.
- d) Are the zeros of a stable linear phase FIR filters lie outside the unit circle of Z-plane? Justify.
- e) Find out the real multiplication and real additions that are required to compute 16 point DFT using direct computation and FFT algorithm?
- f) When DFT x (k) of a sequence x (n) is real?
- **g)** Are the zeros of a stable linear phase FIR filters lie outside the unit circle of Z-plane? Justify.
- **h)** Draw the basic structure of 1st order digital IIR filter.
- i) Why FIR filters are inherently stable?
- **j)** Why aliasing occurs most of the time when mapping of s-plane to z-plane is done using impulse invariance sampling method?

Q2 Find out the impulse response of the system

(10)

y(n) = 1.5y(n-1) + 2y(n-2) + 0.25x(n) + 2x(n-1). And then find out, whether the system is . ,

I. Stable or unstable

II. FIR or IIR system using z-transform

- **Q3** a) The impulse response of LTI system is expressed as $h(n) = 0.2^{n}u(n)$ Find the value of A such that $h(n) - A h(n - 1) = \delta(n)$
 - b) Determine Z-transform of the following signal using properties of z- (5) transform
 - (I) x(n) = nu(n-1)
 - (II) $x(n) = a^n u(n + 1)$.

Q4 (a) Convert the analog filter with system function (5)

$$H(s) = \frac{s + 0.1}{(s + 0.1)^2 + 9}$$

Into a digital IIR filter using impulse invariance transformation method. The digital filter is to have resonant frequency of $\pi/2$.

- (b) What are the limitations of impulse invariance transformation and (5) bilinear transformation method of designing IIR filters.
- Q5 (a) Consider the casual system (6) Y(n) = -0.5y(n-1) - 0.12y(n-2) + 0.7x(n) - 0.252x(n-2)Justify whether the system is FIR or IIR and then obtain a transpose structure of the system.
 - (b) What are the differences in structure of FIR and IIR filter? Explain (4) with suitable example.
- Q6(a)
(b)Compare FIR with IIR filter with suitable example.
Prove that convolution of two signal in discrete time domain is
equal to multiplication in discrete frequency domainusing DFT.(5)
(5)
- **Q7** (a) Explain Decimation in frequency FFT algorithm. (5)
 - (b) What are the practical difficulties in designing FIR filter? Explain (5) with a suitable example.

Q8 Write short notes on (Any two)

- (a) Circular convolution
- (b) Overlap save method

(c) Discrete cosine transform (DCT)

(d) FIR filter using windowing technique

(5)

(5 x 2)