Registration No.										
------------------	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 02

B.TECH PCCH4305

2 x 10

6th Semester Regular / Back Examination 2016 - 17 CHEMICAL REACTION ENGINEERING BRANCH : Chemical Engineering Time : 3 Hours Max Marks : 70 Question Code :Z173

Answer Question No. 1 which is compulsory and any FIVE from the rest. The figures in the right-hand margin indicate marks. Assume suitable notations and any missing data wherever necessary. Answer all parts of a question at a place.

1. Answer the following questions :

- (a) Define rate of reaction.
- (b) Define elementary and non-elementary reactions.
- (c) For a reaction, $H_2 + O_2 \rightarrow H_2O$, what is the relation between $-r_{H2}and r_{O2}$?
- (d) Under what conditions the performance of PFR is equal to that of CSTR ?
- (e) Define mean residence time or holding time.
- (f) Define autocatalytic reaction.
- (g) For a reaction whose rate-concentration curve rises monotonically (n>0), the reactors should be connected in parallel. TRUE/FALSE. Justify.
- (h) For which reaction kinetics if the arrangement of reactors of different volumes (CSTR/PFR-CSTR/CSTR-PFR) is altered, the conversion remains same.
- (i) Define overall and instantaneous fractional yield.
- (j) For autocatalytic reaction which reactor is best for lower conversion?
- 2. The data for the 1st order decomposition of a reaction is given below. Find the activation energy and frequency factor.

K(sec ⁻¹)	0.00043	0.00103	0.0018	0.00355	0.00717
T(K)	313	319	323	328	333

10

3.	(a)	reactant) to product R. Find the size of mixed flow reactor needed for 95% conversion of reactant in a feed stream (25 lit/min) of reactant (2 mol/lit) and enzyme. The kinetics of the fermentation at this enzyme concentration are given by:	
	<i>4</i>	$A \xrightarrow{enzyme} R, \qquad -r_A = \frac{0.1 C_A}{1 + 0.5 C_A}, \frac{mol}{lit.min}$	08
	(b)	$A + B \rightarrow R$, $r_R = 10 C_A^{1.5} C_B^{1.0}$ $A + B \rightarrow S$, $r_S = 10 C_A^{2.0} C_B^{1.5}$ What should be the contacting pattern for maximum yield of R?	02
	(-)		•-
4.	(a)	Explain the methods of size comparison between CSTR and PFR.	06
	(b)	Derive performance equation of CSTR in terms of space time for a second order reaction, $-r_A = KC_AC_B$.	04
5.	(a)		
	(h)	reactions, $A \xrightarrow{10} R$, $A \xrightarrow{5} S$.	03
	(b)	Derive an expression relating conversion and space time, for N number of equal size reactors in series for 1st order irreversible reaction.	07
6.		Derive an expression for C_{Rmax} , for a series reaction, $\stackrel{K_1}{A \to} R \stackrel{K_2}{\to} S$, assuming the reactions are all first order.	10
7.	(a)	Explain how to find final conversion for a known kinetics graphically, when three different volume CSTRs operate in series.	04
	(b)	The concentration readings represent a continuous response to a pulse input into a closed vessel which is to be used as a chemical reactor. Calculate the mean residence time of fluid in	
		the vessel, and tabulate E for the plot of exit age distribution. t, time 0 5 10 15 20 25 30 35	
		$l, lime 0 3 10 13 20 23 30 33 C_{pulse}, gm/lit 0 3 5 5 4 2 1 0 $	06
8.		Write short notes on any TWO:	5 x 2
	(a)	Batch reactor	
	(b) (c)	Plug flow reactor Continuous stirred tank reactor	
	(c) (d)	Recycle reactor	

(d) Recycle reactor

 $\mathsf{Page}\mathbf{2}$