Registration no:						
	,					

Total Number of Pages: 2

B.Tech PEBT5304

5th Semester Regular / Back Examination 2016-17 BIOCHEMICAL REACTION ENGINEERING BRANCH: BIOTECHNOLOGY

Time: 3 Hours
Max Marks: 70

Q.CODE: Y450

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2 x 10)

- a) Write the mass balance equation for a CSTR operating at steady state condition.
- **b)** What are the limitations of Monod's model?
- **c)** Differentiate between the integral and differential methods for analyzing kinetic Data.
- d) Differentiate between order and molecularity.
- e) Differentiate between uncompetitive and non-competitive enzyme inhibition.
- f) Write the importance of Arrhenius' Law?
- g) Compare the time required for a given work in batch, CSTR and PFR.
- **h)** Find the value of ε_A for a reaction $A \rightarrow 3R$.
- i) Define space time and space velocity.
- i) Write the working principle of fluidized bed reactor.
- **Q2 a)** Write the integral method of analysis for a varying volume batch reactor following 1st order reaction kinetics.
 - a vacuum rotary filter. The feed rate is 2120 kg.h-1; each kilogram of broth contains 60 g of cells. To improve filtration, filter aids are added at a rate of 10 kg. h-1. The concentration of kanamycin in the broth is 0.05%. The filtrate is collected at a rate of 112 kg. h-1. The concentration of kanamycin in the filtrate is 0.045%. The filter cake contains cells, and filter aid is continuously removed from the filter cloth. Then find the moisture content in the filter cake?
- **Q3** a) Derive the Monod equation for growth kinetics.

(5) (5)

(5)

(5)

b) During the growth of Saccharomyces cerevisiae on glucose in a fermenter, the following data were observed on glucose concentration (s) and the specific growth rate (μ). Calculate the μ_m and K_s .

		20 21.10 Palli 2					
(s), g/l	15	12 0.33	9	6	2.5	1.7	
(µ), h ⁻¹	0.34	0.33	0.32	0.3	0.22	0.18	

Page 1

- Q4 Derive an expression for the concentration profile inside the porous catalyst considering cylindrical pore and 1st order kinetics.
- **Q5** a) The pyrolysis of ethane proceeds with an activation energy of about 100 kJ/mol. How much faster is the decomposition at 500°C than at 400°C?
 - **b)** Derive the performance equation for a plug flow reactor operating at steady state condition.
- Q6 a) A gaseous feed of pure A (1 mollliter) enters a mixed flow reactor (2 liters) and reacts as follows:

$$2A \rightarrow R$$
, $-r_A = 0.05 C_A^2 \frac{\text{mol}}{\text{liter} \cdot \text{sec}}$

Find what feed rate (liter/min) will give an outlet concentration CA= 0.5 mol/liter.

b) The reactor setup (shown in Figure) consists of three plug flow reactors in two parallel branches Branch D has a reactor of volume 200 litres followed by a reactor of volume 80 litres. Branch E has a reactor of volume 100 litres. What fraction of the feed should go to branch D?

- Q7 a) One liter per minute of liquid containing A and B ($C_{A0} = 0.10$ mol/liter, $C_{Bo} = 0.01$ mol/liter) flow into a mixed reactor of volume V = 1 liter. The materials react in a complex manner for which the stoichiometry is unknown. The outlet stream from the reactor contains A, B, and C ($C_{Af} = 0.02$ mol/liter, $C_{Bf} = 0.03$ mol/liter, $C_{cf} = 0.04$ mol/liter). Find the rate of reaction of A, B, and C for the conditions within the reactor for $v_0 = 1$ lit/min.
 - b) From a series of batch runs with a constant enzyme concentration, the following initial rate data were obtained as a function of initial substrate concentration. Evaluate the Michaelis-Menten kinetic parameters by employing the Langmuir plot, the Lineweaver-Burk plot.

Ī	Substrate	1	2	3	5	7	10	15	20
	Concentration mmol/L								
	Initial Reaction Rate	0.2	0.22	0.3	0.45	0.41	0.5	0.4	0.33
	mmol/L min								

Q8 Write short notes on ANY TWO:

 (5×2)

(5)

- a) Psychometric chart
- **b)** Packed bed reactor
- c) Competitive inhibition
- d) Michaelis-Menten equation